|
[1]
|
Zeng, Y. and Zhao, K. (2020) Recent Results for the Logarithmic Keller-Segel-Fisher/Kpp
System. Boletim da Sociedade Paranaense de Matematica, 38, 37-48.[CrossRef]
|
|
[2]
|
Stevens, A. and Othmer, H.G. (1997) Aggregation, Blowup, and Collapse: The ABC's of Taxis
in Reinforced Random walks. SIAM Journal on Applied Mathematics, 57, 1044-1081.[CrossRef]
|
|
[3]
|
Bellomo, N., Bellouquid, A., Tao, Y. and Winkler, M. (2015) Toward a Mathematical Theory
of Keller-Segel Models of Pattern Formation in Biological Tissues. Mathematical Models and
Methods in Applied Sciences, 25, 1663-1763.[CrossRef]
|
|
[4]
|
Hillen, T. and Painter, K.J. (2009) A User's Guide to PDE Models for Chemotaxis. Journal
of Mathematical Biology, 58, 183-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Horstmann, D. (2004) From 1970 Until Present: The Keller-Segel Model in Chemotaxis and
Its Consequences. Jahresbericht der Deutschen Mathematiker-Vereinigung, 51, 103-165.
|
|
[6]
|
Kalinin, Y.V., Jiang, L., Tu, Y. and Wu, M. (2009) Logarithmic Sensing in Escherichia coli
Bacterial Chemotaxis. Biophysical Journal, 96, 2439-2448.[CrossRef] [PubMed]
|
|
[7]
|
Keller, E.F. and Segel, L.A. (1971) Traveling Bands of Chemotactic Bacteria: A Theoretical
Analysis. Journal of Theoretical Biology, 30, 235-248.[CrossRef] [PubMed]
|
|
[8]
|
Levine, H.A., Sleeman, B.D. and Nilsen-Hamilton, M. (2000) A Mathematical Model for the
Roles of Pericytes and Macrophages in the Initiation of Angiogenesis. I. The Role of Protease
Inhibitors in Preventing Angiogenesis. Mathematical Biosciences, 168, 77-115.[CrossRef]
|
|
[9]
|
Sleeman, B.D. and Levine, H.A. (1997) A System of Reaction Diffusion Equations Arising in
the Theory of Reinforced RandomWalks. SIAM Journal on Applied Mathematics, 57, 683-730.[CrossRef]
|
|
[10]
|
Wang, Z. and Hillen, T. (2008) Shock Formation in a Chemotaxis Model. Mathematical Meth-
ods in the Applied Sciences, 31, 45-70. [Google Scholar] [CrossRef]
|
|
[11]
|
Zeng, Y. and Zhao, K. (2019) On the Logarithmic Keller-Segel-Fisher/Kpp System. Discrete
& Continuous Dynamical Systems: Series A, 39, 5365-5402. [Google Scholar] [CrossRef]
|
|
[12]
|
Zeng, Y. and Zhao, K. (2020) Optimal Decay Rates for a Chemotaxis Model with Logistic
Growth, Logarithmic Sensitivity and Density-Dependent Production/Consumption Rate.
Journal of Differential Equations, 268, 1379-1411.[CrossRef]
|
|
[13]
|
Wang, Z.-A., Xiang, Z. and Yu, P. (2016) Asymptotic Dynamics on a SINGULAR Chemotaxis
System Modeling Onset of Tumor Angiogenesis. Journal of Differential Equations, 260, 2225-
2258.[CrossRef]
|
|
[14]
|
Li, D., Li, T. and Zhao, K. (2011) On a Hyperbolic-Parabolic System Modeling Chemotaxis.
Mathematical Models and Methods in Applied Sciences, 21, 1631-1650. [Google Scholar] [CrossRef]
|
|
[15]
|
Fefferman, C.L., McCormick, D.S., Robinson, J.C. and Rodrigo, J.L. (2014) Higher Order
Commutator Estimates and Local Existence for the Non-resistive MHD Equations and Related
Models. Journal of Functional Analysis, 267, 1035-1056.[CrossRef]
|
|
[16]
|
Tello, J.I. and Winkler, M. (2007) A Chemotaxis System with LOGISTIC Source. Communi-
cations in Partial Differential Equations, 32, 849-877. [Google Scholar] [CrossRef]
|
|
[17]
|
Winkler, M. (2008) Chemotaxis with Logistic Source: Very Weak Global Solutions and Their
Boundedness Properties. Journal of Mathematical Analysis and Applications, 348, 708-729.[CrossRef]
|
|
[18]
|
Winkler, M. (2014) How Far Can Chemotactic Cross-Diffusion Enforce Exceeding Carrying
Capacities. Journal of Nonlinear Science, 24, 809-855.[CrossRef]
|
|
[19]
|
Cao, X. (2014) Boundedness in a Quasilinear Parabolic-Parabolic Keller-Segel System with
Logistic Source. Journal of Mathematical Analysis and Applications, 412, 181-188.[CrossRef]
|
|
[20]
|
Cao, X. and Zheng, S. (2014) Boundedness of Solutions to a Quasilinear Parabolic-Elliptic
Keller-Segel System with Logistic Source. Mathematical Methods in the Applied Sciences, 37,
2326-2330.[CrossRef]
|
|
[21]
|
Winkler, M. (2010) Boundedness in the Higher-Dimensional Parabolic-Parabolic Chemotaxis
System with Logistic Source. Communications in Partial Differential Equations, 35, 1516-1537.[CrossRef]
|