|
[1]
|
Lee, J., Griepp, D.W., Burgess, C.J., et al. (2022) The AAOS 2019 Clinical Practice Guidelines for the Management of Rotator Cuff Injuries Are Unbiased and Incorporate a Diverse Body of Literature. Arthroscopy, Sports Medicine, and Rehabilitation, 4, e559-e565. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Della-Morte, D., Guadagni, F., Palmirotta, R., et al. (2012) Genetics of Ischemic Stroke, Stroke-Related Risk Factors, Stroke Precursors and Treatments. Pharmacogenomics, 13, 595-613. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Iadecola, C. and Anrather, J. (2011) The Immunology of Stroke: From Mechanisms to Translation. Nature Medicine, 17, 796-808. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Shi, K., Tian, D.C., Li, Z.G., et al. (2019) Global Brain Inflammation in Stroke. The Lancet Neurology, 18, 1058-1066. [Google Scholar] [CrossRef]
|
|
[5]
|
Iadecola, C., Buckwalter, M.S. and Anrather, J. (2020) Immune Responses to Stroke: Mechanisms, Modulation, and Therapeutic Potential. Journal of Clinical Investigation, 130, 2777-2788. [Google Scholar] [CrossRef]
|
|
[6]
|
Ginhoux, F. and Garel, S. (2018) The Mysterious Origins of Microglia. Nature Neuroscience, 21, 897-899. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Colonna, M. and Butovsky, O. (2017) Microglia Function in the Central Nervous System during Health and Neurodegeneration. Annual Review of Immunology, 35, 441-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Sas, A.R., Carbajal, K.S., Jerome, A.D., et al. (2020) A New Neutrophil Subset Promotes CNS Neuron Survival and Axon Regeneration. Nature Immunology, 21, 1496-1505. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Qiu, Y.M., Zhang, C.L., Chen, A.Q., et al. (2021) Immune Cells in the BBB Disruption after Acute Ischemic Stroke: Targets for Immune Therapy? Frontiers in Immunology, 12, Article 678744. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Weng, L., Wu, Z., Zheng, W., et al. (2016) Malibatol A Enhances Alternative Activation of Microglia by Inhibiting Phosphorylation of Mammalian Ste20-Like Kinase1 in OGD-BV-2 Cells. Neurological Research, 38, 342-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hu, X., Li, P., Guo, Y., et al. (2012) Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion after Focal Cerebral Ischemia. Stroke, 43, 3063-3070. [Google Scholar] [CrossRef]
|
|
[12]
|
Jia, J., Yang, L., Chen, Y., et al. (2021) The Role of Microglial Phagocytosis in Ischemic Stroke. Frontiers in Immunology, 12, Article 790201. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gemma, C. and Bachstetter, A.D. (2013) The Role of Microglia in Adult Hippocampal Neurogenesis. Frontiers in Cellular Neuroscience, 7, Article 229. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rodríguez-Iglesias, N., Sierra, A. and Valero, J. (2019) Rewiring of Memory Circuits: Connecting Adult Newborn Neurons with the Help of Microglia. Frontiers in Cell and Developmental Biology, 7, Article 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Linnerbauer, M., Wheeler, M.A. and Quintana, F.J. (2020) Astrocyte Crosstalk in CNS Inflammation. Neuron, 108, 608-622. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shen, X.Y., Gao, Z.K., Han, Y., et al. (2021) Activation and Role of Astrocytes in Ischemic Stroke. Frontiers in Cellular Neuroscience, 15, Article 755955. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xu, S., Lu, J., Shao, A., et al. (2020) Glial Cells: Role of the Immune Response in Ischemic Stroke. Frontiers in Immunology, 11, Article 294. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cekanaviciute, E., Fathali, N., Doyle, K.P., et al. (2014) Astrocytic Transforming Growth Factor-Beta Signaling Reduces Subacute Neuroinflammation after Stroke in Mice. Glia, 62, 1227-1240. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cekanaviciute, E. and Buckwalter, M.S. (2016) Astrocytes: Integrative Regulators of Neuroinflammation in Stroke and Other Neurological Diseases. Neurotherapeutics, 13, 685-701. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zong, X., Li, Y., Liu, C., et al. (2020) Theta-Burst Transcranial Magnetic Stimulation Promotes Stroke Recovery by Vascular Protection and Neovascularization. Theranostics, 10, 12090-12110. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, Q., Liu, C., Shi, R., et al. (2022) Blocking C3d /GFAP A1 Astrocyte Conversion with Semaglutide Attenuates Blood-Brain Barrier Disruption in Mice after Ischemic Stroke. Aging and Disease, 13, 943-959. [Google Scholar] [CrossRef]
|
|
[22]
|
Song, X., Gong, Z., Liu, K., et al. (2020) Baicalin Combats Glutamate Excitotoxicity via Protecting Glutamine Synthetase from ROS-Induced 20S Proteasomal Degradation. Redox Biology, 34, Article 101559. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Korte, N., Ilkan, Z., Pearson, C.L., et al. (2022) The Ca2 -Gated Channel TMEM16A Amplifies Capillary Pericyte Contraction and Reduces Cerebral Blood Flow after Ischemia. The Journal of Clinical Investigation, 132, e154118. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhang, Y., Liu, L., Zhao, X., et al. (2022) New Insight into Ischemic Stroke: Circadian Rhythm in Post-Stroke Angiogenesis. Frontiers in Pharmacology, 13, Article 927506. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Balabanov, R., Beaumont, T. and Dore-Duffy, P. (1999) Role of Central Nervous System Microvascular Pericytes in Activation of Antigen-Primed Splenic T-Lymphocytes. Journal of Neuroscience Research, 55, 578-587. [Google Scholar] [CrossRef]
|
|
[26]
|
Guijarro-Muñoz, I., Compte, M., Álvarez-Cienfuegos, A., et al. (2014) Lipopolysaccharide Activates Toll-Like Receptor 4 (TLR4)-Mediated NF-κB Signaling Pathway and Proinflammatory Response in Human Pericytes. The Journal of Biological Chemistry, 289, 2457-2468. [Google Scholar] [CrossRef]
|
|
[27]
|
Yemisci, M., Gursoy-Ozdemir, Y., Vural, A., et al. (2009) Pericyte Contraction Induced by Oxidative-Nitrative Stress Impairs Capillary Reflow Despite Successful Opening of an Occluded Cerebral Artery. Nature Medicine, 15, 1031-1037. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Rustenhoven, J., Jansson, D., Smyth, L.C., et al. (2017) Brain Pericytes as Mediators of Neuroinflammation. Trends in Pharmacological Sciences, 38, 291-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, S., Jin, H., Zhu, Y., et al. (2017) Diverse Functions and Mechanisms of Pericytes in Ischemic Stroke. Current Neuropharmacology, 15, 892-905. [Google Scholar] [CrossRef]
|
|
[30]
|
Perez-de-Puig, I., Miró-Mur, F., Ferrer-Ferrer, M., et al. (2015) Neutrophil Recruitment to the Brain in Mouse and Human Ischemic Stroke. Acta Neuropathologica, 129, 239-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ma, Y., Yang, S., He, Q., et al. (2021) The Role of Immune Cells in Post-Stroke Angiogenesis and Neuronal Remodeling: The Known and the Unknown. Frontiers in Immunology, 12, Article 784098. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kang, L., Yu, H., Yang, X., et al. (2020) Neutrophil Extracellular Traps Released by Neutrophils Impair Revascularization and Vascular Remodeling after Stroke. Nature Communications, 11, Article No. 2488. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Otxoa-de-Amezaga, A., Miró-Mur, F., Pedragosa, J., et al. (2019) Microglial Cell Loss after Ischemic Stroke Favors Brain Neutrophil Accumulation. Acta Neuropathologica, 137, 321-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Fogg, D.K., Sibon, C., Miled, C., et al. (2006) A Clonogenic Bone Marrow Progenitor Specific for Macrophages and Dendritic Cells. Science, 311, 83-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ziegler-Heitbrock, L., Ancuta, P., Crowe, S., et al. (2010) Nomenclature of Monocytes and Dendritic Cells in Blood. Blood, 116, e74-e80. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wang, R., Liu, Y., Ye, Q., et al. (2020) RNA Sequencing Reveals Novel Macrophage Transcriptome Favoring Neurovascular Plasticity after Ischemic Stroke. Journal of Cerebral Blood Flow & Metabolism, 40, 720-738. [Google Scholar] [CrossRef]
|
|
[37]
|
Wicks, E.E., Ran, K.R., Kim, J.E., et al. (2022) The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Frontiers in Immunology, 13, Article 897022. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhang, Z., Lv, M., Zhou, X., et al. (2022) Roles of Peripheral Immune Cells in the Recovery of Neurological Function after Ischemic Stroke. Frontiers in Cellular Neuroscience, 16, Article 1013905. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wattananit, S., Tornero, D., Graubardt, N., et al. (2016) Monocyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice. Journal of Neuroscience, 36, 4182-4195. [Google Scholar] [CrossRef]
|
|
[40]
|
Murray, P.J., Allen, J.E., Biswas, S.K., et al. (2014) Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 41, 14-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhang, W., Zhao, J., Wang, R., et al. (2019) Macrophages Reprogram after Ischemic Stroke and Promote Efferocytosis and Inflammation Resolution in the Mouse Brain. CNS Neuroscience & Therapeutics, 25, 1329-1342. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Batchelor, P.E., Porritt, M.J., Martinello, P., et al. (2002) Macrophages and Microglia Produce Local Trophic Gradients That Stimulate Axonal Sprouting toward but not beyond the Wound Edge. Molecular and Cellular Neurosciences, 21, 436-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liesz, A., Zhou, W., Mracskó, É., et al. (2011) Inhibition of Lymphocyte Trafficking Shields the Brain against Deleterious Neuroinflammation after Stroke. Brain, 134, 704-720. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Liesz, A., Suri-Payer, E., Veltkamp, C., et al. (2009) Regulatory T Cells Are Key Cerebroprotective Immunomodulators in Acute Experimental Stroke. Nature Medicine, 15, 192-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ito, M., Komai, K., Mise-Omata, S., et al. (2019) Brain Regulatory T Cells Suppress Astrogliosis and Potentiate Neurological Recovery. Nature, 565, 246-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Jain, R.W. and Yong, V.W. (2022) B Cells in Central Nervous System Disease: Diversity, Locations and Pathophysiology. Nature Reviews Immunology, 22, 513-524. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ortega, S.B., Torres, V.O., Latchney, S.E., et al. (2020) B Cells Migrate into Remote Brain Areas and Support Neurogenesis and Functional Recovery after Focal Stroke in Mice. Proceedings of the National Academy of Sciences of the United States of America, 117, 4983-4993. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Varadarajan, S.G., Hunyara, J.L., Hamilton, N.R., et al. (2022) Central Nervous System Regeneration. Cell, 185, 77-94. [Google Scholar] [CrossRef] [PubMed]
|