|
[1]
|
Skvarc, D.R., Berk, M., Byrne, L.K., et al. (2018) Post-Operative Cognitive Dysfunction: An Exploration of the Inflammatory Hypothesis and Novel Therapies. Neuroscience & Biobehavioral Reviews, 84, 116-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kopecky, J. (2023) Population Age Structure and Secular Stagnation: Evidence from Long Run Data. The Journal of the Economics of Ageing, 24, Article 100442. [Google Scholar] [CrossRef]
|
|
[3]
|
尹号, 李娟. 腰椎脊柱手术术后认知功能障碍的危险因素及预防对策的研究进展[J]. 颈腰痛杂志, 2023, 44(1): 114-116.
|
|
[4]
|
Hovens, I.B., Schoemaker, R.G., Van der Zee, E.A., et al. (2014) Postoperative Cognitive Dysfunction: Involvement of Neuroinflammation and Neuronal Functioning. Brain, Behavior, and Immunity, 38, 202-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
王跃. 不同麻醉方式对老年骨折患者术后认知功能的影响探讨[J]. 中国实用医药, 2023, 18(15): 24-27. [Google Scholar] [CrossRef]
|
|
[6]
|
庄芹, 李晓红. 七氟烷与右美托咪定对行全子宫切除术患者的麻醉效果及认知功能的影响[J]. 中国医学创新, 2023, 20(22): 1-5.
|
|
[7]
|
雷凡, 叶济世, 夏中元. 中枢神经炎症在围手术期神经认知功能障碍中的研究进展[J]. 医学综述, 2021, 27(8): 1562-1566.
|
|
[8]
|
李哲. CX3CL1-CX3CR1通路参与小胶质细胞M2型极化对老年鼠术后认知功能的影响及机制研究[D]: [博士学位论文]. 沈阳: 中国医科大学, 2019.[CrossRef]
|
|
[9]
|
Lyman, M., Lloyd, D.G., Ji, X., et al. (2014) Neuroinflammation: The Role and Consequences. Neuroscience Research, 79, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
汪家文, 李佳洁, 吴君, 等. 肠道菌群通过NLRP3介导神经炎症调节rmTBI导致的记忆功能障碍[J]. 重庆医学, 2023, 52(20): 3048-3054.
|
|
[11]
|
刘明, 朱新建, 张浩, 等. 超声引导下前锯肌平面阻滞预防乳腺癌术后疼痛综合征的临床观察[J]. 临床研究, 2023, 31(12): 46-49.
|
|
[12]
|
Amidfar, M., Garcez, M.L. and Kim, Y.-K. (2023) The Shared Molecular Mechanisms Underlying Aging of the Brain, Major Depressive Disorder, and Alzheimer’s Disease: The Role of Circadian Rhythm Disturbances. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 123, Article 110721. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
郭莹, 张析哲, 梁晓东, 等. 全身麻醉药物对发育大脑小胶质细胞影响的研究进展[J]. 临床麻醉学杂志, 2023, 39(9): 978-982.
|
|
[14]
|
Teixeira-Santos, L., Albino-Teixeira, A. and Pinho, D. (2020) Neuroinflammation, Oxidative Stress and Their Interplay in Neuropathic Pain: Focus on Specialized Pro-Resolving Mediators and NADPH Oxidase Inhibitors as Potential Therapeutic Strategies. Pharmacological Research, 162, Article 105280. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Bhuiyan, P., Sun, Z., Chen, Y., et al. (2023) Peripheral Surgery Triggers Mast Cells Activation: Focusing on Neuroinflammation. Behavioural Brain Research, 452, Article 114593. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Fourgeaud, L., Grigoleit, J.-S., Campbell, S., Needham, S. and Bhattacharya, A. (2019) O56. Model Systems in Mice to Study Peripheral Inflammation, Resulting in Neuroinflammation. Biological Psychiatry, 85, S128-S129. [Google Scholar] [CrossRef]
|
|
[17]
|
Takata, F., Nakagawa, S., Matsumoto, J., et al. (2021) Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Frontiers in Cellular Neuroscience, 15, Article 661838. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
李葛, 韩根成. 外周免疫系统与中枢神经系统疾病交互影响的机制研究[J]. 中国免疫学杂志, 2021, 37(22): 2689-2693.
|
|
[19]
|
Van Loo, G. and Bertrand, M.J.M. (2023) Death by TNF: A Road to Inflammation. Nature Reviews Immunology, 23, 289-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Smith, B.C., Tinkey, R.A., et al. (2022) Targetability of the Neurovascular Unit in Inflammatory Diseases of the Central Nervous System. Immunological Reviews, 311, 39-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Stoddart, P., Satchell, S.C. and Ramnath, R. (2022) Cerebral Microvascular Endothelial Glycocalyx Damage, Its Implications on the Blood-Brain Barrier and a Possible Contributor to Cognitive Impairment. Brain Research, 1780, Article 147804. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ruan, Z., Zhang, D., Huang, R., Sun, W., et al. (2022) Microglial Activation Damages Dopaminergic Neurons through MMP-2/-9-Mediated Increase of Blood-Brain Barrier Permeability in a Parkinson’s Disease Mouse Model. International Journal of Molecular Sciences, 23, Article 2793. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
张云鹏, 陈小帅, 王岩, 等. 术后细菌性颅内感染患者脑脊液炎性因子水平与血脑屏障完整度的关系[J]. 热带医学杂志, 2023, 23(9): 1232-1235.
|
|
[24]
|
Varatharaj, A. and Galea, I. (2017) The Blood-Brain Barrier in Systemic Inflammation. Brain, Behavior, and Immunity, 60, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Albaret, G., Sifré, E., Floch, P., et al. (2020) Alzheimer’s Disease and Helicobacter pylori Infection: Inflammation from Stomach to Brain? Journal of Alzheimer’s Disease, 73, 801-809. [Google Scholar] [CrossRef]
|
|
[26]
|
魏晓佟, 郭瑞, 张启春. 小胶质细胞表型和功能研究进展[J]. 中国药理学, 2024, 40(3): 410-415.
|
|
[27]
|
Lull, M.E. and Block, M.L. (2010) Microglial Activation and Chronic Neurodegeneration. Neurotherapeutics, 7, 354-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ronaldson, P.T. and Davis, T.P. (2020) Regulation of Blood-Brain Barrier Integrity by Microglia in Health and Disease: A Therapeutic Opportunity. Journal of Cerebral Blood Flow & Metabolism, 40, S6-S24. [Google Scholar] [CrossRef]
|
|
[29]
|
Shi, T., Liu, Y., Ji, B., Wang, J., Ge, Y., Fang, Y., Xie, Y., Xiao, H., Wu, L. and Wang, Y. (2023) Acupuncture Relieves Cervical Spondylosis Radiculopathy by Regulating Spinal Microglia Activation through MAPK Signaling Pathway in Rats. Journal of Pain Research, 16, 3945-3960. [Google Scholar] [CrossRef]
|
|
[30]
|
胡鑫, 汪蒨, 张晨曦, 等. 小胶质细胞-星形胶质细胞的交互作用及其介导的神经炎症在阿尔茨海默病中的研究进展[J]. 中国比较医学杂志, 2023, 33(11): 142-149.
|
|
[31]
|
Fischer, R. and Maier, O. (2015) Interrelation of Oxidative Stress and Inflammation in Neurodegenerative Disease: Role of TNF. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 610813. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Sochocka, M., Diniz, B.S. and Leszek, J. (2017) Inflammatory Response in the CNS: Friend or Foe? Molecular Neurobiology, 54, 8071-8089. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Sun, Y., Koyama, Y. and Shimada, S. (2022) Inflammation from Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Frontiers in Aging Neuroscience, 14, Article 903455. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kempuraj, D., et al. (2018) Glia Maturation Factor and Mast Cell-Dependent Expression of Inflammatory Mediators and Proteinase Activated Receptor-2 in Neuroinflammation. Journal of Alzheimer’s Disease, 66, 1117-1129. [Google Scholar] [CrossRef]
|
|
[35]
|
Welcome, M.O. (2019) Gut Microbiota Disorder, Gut Epithelial and Blood-Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways. NeuroMolecular Medicine, 21, 205-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chakrabarti, A., Geurts, L., Hoyles, L., et al. (2022) The Microbiota-Gut-Brain Axis: Pathways to Better Brain Health. Perspectives on What We Know, What We Need to Investigate and How to Put Knowledge into Practice. Cellular and Molecular Life Sciences, 79, Article 80. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
郑伟, 李娜, 庞昆, 等. 酒石酸布托啡诺联合右美托咪定超前镇痛对老年膀胱癌根治术病人苏醒期躁动及术后短期内认知功能的影响[J]. 实用老年医学, 2023, 37(3): 238-242.
|
|
[38]
|
王领, 赵雪. 帕瑞昔布联合右美托咪定对老年前列腺切除术患者术后痛觉过敏和认知功能的保护作用[J]. 中国老年学杂志, 2023, 43(11): 2635-2638.
|
|
[39]
|
杨倩, 张徽, 高龙飞, 等. 椎管内麻醉老年患者术后发生认知功能障碍的相关因素探讨[J]. 山西医药杂志, 2021, 50(24): 3367-3369.
|
|
[40]
|
Zielinski, M.R. and Gibbons, A.J. (2022) Neuroinflammation, Sleep, and Circadian Rhythms. Frontiers in Cellular and Infection Microbiology, 12, Article 853096. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wang, X., Hua, D., Tang, X., et al. (2021) The Role of Perioperative Sleep Disturbance in Postoperative Neurocognitive Disorders. Nature and Science of Sleep, 13, 1395-1410. [Google Scholar] [CrossRef]
|
|
[42]
|
Liu, P., Gao, T., Li, T., et al. (2021) Repeated Propofol Exposure-Induced Neuronal Damage and Cognitive Impairment in Aged Rats by Activation of NF-κB Pathway and NLRP3 Inflammasome. Neuroscience Letters, 740, Article 135461. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
刘亚兵, 李婧, 武莉, 等. 丙泊酚对老年大鼠的认知功能障碍及海马神经元凋亡的影响[J]. 现代生物医学进展, 2023, 23(20): 3826-3830. [Google Scholar] [CrossRef]
|
|
[44]
|
侯琪. LncRNA Riken/miRNA-101a/MKP-1/JNK通路在七氟烷所致神经发育毒性中的作用和机制研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2022.[CrossRef]
|
|
[45]
|
Cao, Y., Li, Z., Ma, L., et al. (2018) Isoflurane-Induced Postoperative Cognitive Dysfunction Is Mediated by Hypoxia-Inducible Factor-1α-Dependent Neuroinflammation in Aged Rats. Molecular Medicine Reports, 17, 7730-7736. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
吴敏仙, 汪建胜. 高龄全髋关节置换术围术期血清和脑脊液Tau蛋白、磷酸化Tau蛋白和β淀粉样蛋白1~42蛋白质表达与术后早期认知功能障碍的关系[J]. 上海医学, 2016, 39(2): 76-79.
|
|
[47]
|
Wu, J., Guo, Y., Li, W., et al. (2023) Microglial Priming Induced by Loss of Mef2C Contributes to Postoperative Cognitive Dysfunction in Aged Mice. Experimental Neurology, 365, Article 114385. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
王妍妍. 非甾体抗炎药治疗阿尔茨海默病随机对照试验的meta分析[D]: [硕士学位论文]. 太原: 山西医科大学, 2018.
|
|
[49]
|
杜远琳, 佘汉, 唐小唪, 等. 右美托咪定对老年患者术后早期认知功能障碍保护机制的代谢组学研究[J]. 陆军军医大学学报, 2023, 45(20): 2120-2131. [Google Scholar] [CrossRef]
|
|
[50]
|
吴国华. 氯胺酮对离体海马神经元凋亡及p38MAPK信号转导通路活性的影响[D]: [硕士学位论文]. 福州: 福建医科大学, 2013.
|
|
[51]
|
王红运, 高臻辉, 梁斌, 等. 利多卡因对老年脊柱手术患者术后炎症免疫反应及认知功能的影响[J]. 药物评价研究, 2017, 40(7): 979-982.
|