|
[1]
|
Ji, D., Lu, S., Zhang, H., Li, Z., Wang, S., Miao, T., Jiang, Z. and Ao, L. (2024) Bulk and Single-Cell Transcriptome Reveal the Immuno-Prognostic Subtypes and Tumour Microenvironment Heterogeneity in HCC. Liver International, 44, 979-995. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kang, Z., Zhao, Y.X., Qiu, R.S.Q., Chen, D.N., Zheng, Q.S., Xue, X.Y., Xu, N. and Wei, Y. (2024) Identification Macrophage Signatures in Prostate Cancer by Single-Cell Sequencing and Machine Learning. Cancer Immunology, Immunotherapy, 73, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, W., Li, T., Xie, Z., Zhao, J., Zhang, Y., Ruan, Y. and Han, B. (2024) Integrating Single-Cell and Bulk RNA Sequencing Data Unveils Antigen Presentation and Process-Related CAFS and Establishes A Predictive Signature in Prostate Cancer. Journal of Translational Medicine, 22, Article No. 57. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yu, T., Cheng, W., Zhang, J., Wang, T., Liu, Y., Duan, Y., Hu, A., Feng, J., Li, M., Li, Y., et al. (2024) Identification of a PANoptosis-Related Gene Signature for Predicting the Prognosis, Tumor Microenvironment and Therapy Response in Breast Cancer. Journal of Cancer, 15, 428-443. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
He, X. and Feng, W. (2023) Identification and Validation of NK Marker Genes in Ovarian Cancer by ScRNA-Seq Combined with WGCNA Algorithm. Mediators of Inflammation, 2023, Article ID: 6845701. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tan, Z., Chen, X., Zuo, J., Fu, S., Wang, H. and Wang, J. (2023) Comprehensive Analysis of ScRNA-Seq and Bulk RNA-Seq Reveals Dynamic Changes in the Tumor Immune Microenvironment of Bladder Cancer and Establishes a Prognostic Model. Journal of Translational Medicine, 21, Article No. 223. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, Q.W., Zhao, Y.A., Wang, F. and Tan, G.L. (2023) Clustering and Machine Learning-Based Integration Identify Cancer Associated Fibroblasts Genes’ Signature in Head and Neck Squamous Cell Carcinoma. Frontiers in Genetics, 14, Article 1111816. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhang, D., Li, D., Shen, L., Hu, D., Tang, B., Guo, W., Wang, Z., Zhang, Z., Wei, G. and He, D. (2022) Exosomes Derived from Piwil2-Induced Cancer Stem Cells Transform Fibroblasts into Cancer-Associated Fibroblasts. Oncology Reports, 47, 1125-1132. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zheng, S., Zou, Y., Tang, Y., Yang, A., Liang, J.Y., Wu, L., Tian, W., Xiao, W., Xie, X., Yang, L., et al. (2022) Landscape of Cancer-Associated Fibroblasts Identifies the Secreted Biglycan as a Protumor and Immunosuppressive Factor in Triple-Negative Breast Cancer. Oncoimmunology, 11, Article ID: 2020984. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhong, B., Cheng, B., Huang, X., Xiao, Q., Niu, Z., Chen, Y.F., Yu, Q., Wang, W. and Wu, X.J. (2022) Colorectal Cancer-Associated Fibroblasts Promote Metastasis by Up-Regulating LRG1 through Stromal IL-6/STAT3 Signaling. Cell Death & Disease, 13, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhou, Y., Tang, W., Zhuo, H., Zhu, D., Rong, D., Sun, J. and Song, J. (2022) Cancer-Associated Fibroblast Exosomes Promote Chemoresistance to Cisplatin in Hepatocellular Carcinoma through CircZFR Targeting Signal Transducers and Activators of Transcription (STAT3)/Nuclear Factor-κB (NF-κB) Pathway. Bioengineered, 13, 4786-4797. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Li, Z., Sun, C. and Qin, Z. (2021) Metabolic Reprogramming of Cancer-Associated Fibroblasts and Its Effect on Cancer Cell Reprogramming. Theranostics, 11, 8322-8336. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liu, W., Wang, M., Wang, M. and Liu, M. (2023) Single-Cell and Bulk RNA Sequencing Reveal Cancer-Associated Fibroblast Heterogeneity and a Prognostic Signature in Prostate Cancer. Medicine, 102, e34611. [Google Scholar] [CrossRef]
|
|
[14]
|
Pan, J., Ma, Z., Liu, B., Qian, H., Shao, X., Liu, J., Wang, Q. and Xue, W. (2023) Identification of Cancer-Associated Fibroblasts Subtypes in Prostate Cancer. Frontiers in Immunology, 14, Article 1133160. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018) Integrating Single-Cell Transcriptomic Data across Different Conditions, Technologies, and Species. Nature Biotechnology, 36, 411-420. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Huang, S., Chaudhary, K. and Garmire, L.X. (2017) More Is Better: Recent Progress in Multi-Omics Data Integration Methods. Frontiers in Genetics, 8, Article 84. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck III, W.M., Hao, Y., Stoeckius, M., Smibert, P. and Satija, R. (2019) Comprehensive Integration of Single-Cell Data. Cell, 177, 1888-1902.E21. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, Y., Fan, A., Li, Y., Liu, Z., Yu, L., Guo, J., Hou, J., Li, X. and Chen, W. (2023) Single-Cell RNA Sequencing Reveals That HSD17B2 in Cancer-Associated Fibroblasts Promotes the Development and Progression of Castration-Resistant Prostate Cancer. Cancer Letters, 566, Article ID: 216244. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhou, H., Zhang, T., Chen, L., Cui, F., Xu, C., Peng, J., Ma, W., Huang, J., Sheng, X., Liu, M., et al. (2023) The Functional Implication of ATF6α in Castration-Resistant Prostate Cancer Cells. FASEB Journal, 37, e22758. [Google Scholar] [CrossRef]
|
|
[20]
|
Zhou, Y., Li, H., Yu, D.E., Zhang, C., Yang, H., Wang, C., Zhang, Y., Deng, W., Li, B. and Zhang, S. (2023) Developing High-Resolution Metastasis Signatures for Improved Cancer Prognosis and Drug Sensitivity Prediction Using Single-Cell RNA Sequencing Data: A Case Study in Lung Adenocarcinoma. Journal of Computational Biophysics and Chemistry. [Google Scholar] [CrossRef]
|
|
[21]
|
Di, Z., Zhou, S., Xu, G., Ren, L., Li, C., Ding, Z., Huang, K., Liang, L. and Yuan, Y. (2022) Single-Cell and WGCNA Uncover a Prognostic Model and Potential Oncogenes in Colorectal Cancer. Biological Procedures Online, 24, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hu, J., Jiang, Y., Wei, Q., Li, B., Xu, S., Wei, G., Li, P., Chen, W., Lv, W., Xiao, X., et al. (2022) Development of a Cancer-Associated Fibroblast-Related Prognostic Model in Breast Cancer via Bulk and Single-Cell RNA Sequencing. BioMed Research International, 2022, Article ID: 2955359. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, Q., Zhang, X., Du, K., Wu, X., Zhou, Y., Chen, D. and Zeng, L. (2022) Machine Learning Identifies Characteristics Molecules of Cancer Associated Fibroblasts Significantly Correlated with the Prognosis, Immunotherapy Response and Immune Microenvironment in Lung Adenocarcinoma. Frontiers in Oncology, 12, Article 1059253. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhao, Z., Li, W., Zhu, L., Xu, B., Jiang, Y., Ma, N., Liu, L., Qiu, J. and Zhang, M. (2022) Construction and Verification of a Fibroblast-Related Prognostic Signature Model for Colon Cancer. Frontiers in Genetics, 13, Article 908957. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wen, X.Y., Wang, R.Y., Yu, B., Yang, Y., Yang, J. and Zhang, H.C. (2023) Integrating Single-Cell and Bulk RNA Sequencing to Predict Prognosis and Immunotherapy Response in Prostate Cancer. Scientific Reports, 13, Article No. 15597. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wu, F., Ning, H., Sun, Y., Wu, H. and Lyu, J. (2023) Integrative Exploration of the Mutual Gene Signatures and Immune Microenvironment between Benign Prostate Hyperplasia and Castration-Resistant Prostate Cancer. Aging Male, 26, Article ID: 2183947. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xiao, C. and Liang, W. (2023) Bulk RNA-Seq Combined with Single-Cell Transcriptome Sequencing Reveals the Possible Mechanisms by Which HDGFL3 Involves in Prostate Cancer Growth and Metastasis. Archivos Espanoles de Urologia, 76, 425-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lyu, F., Gao, X., Ma, M., Xie, M., Shang, S., Ren, X., Liu, M. and Chen, J. (2023) Crafting a Personalized Prognostic Model for Malignant Prostate Cancer Patients Using Risk Gene Signatures Discovered through TCGA-PRAD Mining, Machine Learning, and Single-Cell RNA-Sequencing. Diagnostics, 13, Article 1997. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Qian, Y., Feng, D., Wang, J., Wei, W., Wei, Q., Han, P. and Yang, L. (2023) Establishment of Cancer-Associated Fibroblasts-Related Subtypes and Prognostic Index for Prostate Cancer through Single-Cell and Bulk RNA Transcriptome. Scientific Reports, 13, Article No. 9016. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Sun, Z., Wang, J., Zhang, Q., Meng, X., Ma, Z., Niu, J., Guo, R., Tran, L.J., Zhang, J., Liu, Y., et al. (2023) Coordinating Single-Cell and Bulk RNA-Seq in Deciphering the Intratumoral Immune Landscape and Prognostic Stratification of Prostate Cancer Patients. Environmental Toxicology, 39, 657-668. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, Z., Wei, D., Li, S., Tang, Q., Lu, G., Gu, S., Lu, L., Liang, F., Teng, J., Lin, J., et al. (2023) Healing Mechanism of Diabetic Foot Ulcers Using Single-Cell RNA-Sequencing. Annals of Translational Medicine, 11, Article 210. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Han, J., Zhou, Y., Zhang, C., Feng, J., Wang, J., Guo, K., Chen, W. and Li, Y. (2023) Intratumoral Immune Heterogeneity of Prostate Cancer Characterized by Typing and Hub Genes. Journal of Cellular and Molecular Medicine, 27, 101-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Huang, J., Liu, D., Li, J., Xu, J., Dong, S. and Zhang, H. (2023) A 12-Gene Panel in Estimating Hormone-Treatment Responses of Castration-Resistant Prostate Cancer Patients Generated Using a Combined Analysis of Bulk and Single-Cell Sequencing Data. Annals of Medicine, 55, Article ID: 2260387. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Kang, K., Wu, Y., Han, C., Wang, L., Wang, Z. and Zhao, A. (2023) Homologous Recombination Deficiency in Triple-Negative Breast Cancer: Multi-Scale Transcriptomics Reveals Distinct Tumor Microenvironments and Limitations in Predicting Immunotherapy Response. Computers in Biology and Medicine, 158, Article ID: 106836. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chen, K., Wang, Q., Liu, X., Tian, X., Dong, A. and Yang, Y. (2023) Immune Profiling and Prognostic Model of Pancreatic Cancer Using Quantitative Pathology and Single-Cell RNA Sequencing. Journal of Translational Medicine, 21, Article No. 210. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chen, X., Peng, C., Chen, Y., Ding, B., Liu, S., Song, Y., Li, Y., Sun, B. and Yang, R. (2023) A T-Cell-Related Signature for Prognostic Stratification and Immunotherapy Response in Hepatocellular Carcinoma Based on Transcriptomics and Single-Cell Sequencing. BMC Bioinformatics, 24, Article No. 216. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Feriz, A.M., Khosrojerdi, A., Lotfollahi, M., Shamsaki, N., Ghasemigol, M., Hosseinigol, E., Fereidouni, M., Rohban, M.H., Sebzari, A.R., Saghafi, S., et al. (2023) Single-Cell RNA Sequencing Uncovers Heterogeneous Transcriptional Signatures in Tumor-Infiltrated Dendritic Cells in Prostate Cancer. Heliyon, 9, E15694. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Hong, Y.C., Hu, T.Y., Hsu, C.S., Yeh, W.W., Wong, W.Z., Shen, T.W., Chang, C.H., Hua, K., Tung, C.Y., Peng, Y.C., et al. (2023) Single-Cell Analysis of Castration-Resistant Prostate Cancers to Identify Potential Biomarkers for Diagnosis and Prognosis of Neuroendocrine Prostate Cancer. American Journal of Cancer Research, 13, 4560-4578.
|
|
[39]
|
Qin, C., Liu, S., Zhou, S., Wang, Q., Xia, X., Hu, J., Yuan, X., Wang, Z., Yu, Y. and Ma, D. (2023) PIK3C2A Is A Prognostic Biomarker That Is Linked to Immune Infiltrates in Kidney Renal Clear Cell Carcinoma. Frontiers in Immunology, 14, Article 1114572. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wang, S., Fan, G., Li, L., He, Y., Lou, N., Xie, T., Dai, L., Gao, R., Yang, M., Shi, Y., et al. (2023) Integrative Analyses of Bulk and Single-Cell RNA-Seq Identified Cancer-Associated Fibroblasts-Related Signature as a Prognostic Factor for Immunotherapy in NSCLC. Cancer Immunology, Immunotherapy, 72, 2423-2442. [Google Scholar] [CrossRef] [PubMed]
|