时间周期环境下具有脉冲的退化反应-扩散病毒感染模型的空间动力学
Spatial Dynamics of a Time-Periodic Degenerated Diffusive Virus Infection Model with Pulse Vaccination
DOI: 10.12677/AAM.2024.137321, PDF,    科研立项经费支持
作者: 宋鹏宇:兰州理工大学应用数学系,甘肃 兰州
关键词: 病毒感染模型退化扩散脉冲预防接种最小传播速度行波解Virus Infection Model Degenerated Diffusion Pulse Vaccination Spreading Speed Traveling Waves
摘要: 本文通过脉冲接种的时间周期退化反应-扩散病毒感染模型研究了病毒的传播。 建立了周期行波 传播速度的存在性及其与最小传播速度的一致性。 该模型面临两个主要挑战:一是部分退化导致 解映射缺乏紧性;二是该模型的非线性项是非合作的。 克服这些挑战涉及到利用渐近不动点定理, 并借助于Kuratowski非紧测度的一些性质。
Abstract: This study is devoted to the investigation of virus spread via a time-periodic degener- ated reaction-diffusion virus infection model with pulse vaccination. We establish the existence of spreading speed and its coincidence with the minimal speed of periodic traveling waves. Two main challenges are encountered in this model: firstly, the par- tially degenerate case leads to the lack of compactness for solution maps, and secondly, the nonlinearity of this model isn’t cooperative. Overcoming these challenges involves the utilization of the asymptotic fixed point theorem with the help of some properties of the Kuratowski measure of noncompactness.
文章引用:宋鹏宇. 时间周期环境下具有脉冲的退化反应-扩散病毒感染模型的空间动力学[J]. 应用数学进展, 2024, 13(7): 3356-3372. https://doi.org/10.12677/AAM.2024.137321

参考文献

[1] Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M. and Ho, D.D. (1996) HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time. Science, 271, 1582-1586. [Google Scholar] [CrossRef] [PubMed]
[2] Nowak, M. and May, R.M. (2000) Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press.
[3] Nowak, M.A. and Bangham, C.R.M. (1996) Population Dynamics of Immune Responses to Persistent Viruses. Science, 272, 74-79. [Google Scholar] [CrossRef] [PubMed]
[4] Brauner, C., Jolly, D., Lorenzi, L. and Thiebaut, R. (2011) Heterogeneous Viral Environment in a HIV Spatial Model. Discrete Continuous Dynamical Systems—B, 15, 545-572. [Google Scholar] [CrossRef
[5] Wang, F., Huang, Y. and Zou, X. (2014) Global Dynamics of a PDE In-Host Viral Model. Applicable Analysis, 93, 2312-2329. [Google Scholar] [CrossRef
[6] Wang, J., Yang, R. and Huo, H. (2023) Dynamics of a Diffusive Viral Infection Model with Impulsive CTL Immune Response. Applicable Analysis, 103, 106-123. [Google Scholar] [CrossRef
[7] Beverton, R.J.H. and Holt, S.J. (2012) On the Dynamics of Exploited Fish Populations, Volume
[8] 11. Springer Science & Business Media.
[9] Ricker, W.E. (1954) Stock and Recruitment. Journal of the Fisheries Research Board of Cana- da, 11, 559-623. [Google Scholar] [CrossRef
[10] Robinson, S.M. (1960) Some Properties of the Fundamental Solution of the Parabolic Equation. Duke Mathematical Journal, 27, 195-220. [10] Wang, M. (2021) Nonlinear Second Order Parabolic Equations. CRC Press. [Google Scholar] [CrossRef
[11] Benchohra, M., Henderson, J. and Ntouyas, S. (2006) Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation. [Google Scholar] [CrossRef
[12] Martin, R.H. and Smith, H.L. (1990) Abstract Functional-Differential Equations and Reaction- Diffusion Systems. Transactions of the American Mathematical Society, 321, 1-44. [Google Scholar] [CrossRef
[13] Deimling, K. (2010) Nonlinear Functional Analysis. Courier Corporation.
[14] Liang, X., Zhang, L. and Zhao, X. (2017) The Principal Eigenvalue for Degenerate Periodic Reaction-Diffusion Systems. SIAM Journal on Mathematical Analysis, 49, 3603-3636. [Google Scholar] [CrossRef
[15] Huang, M., Wu, S. and Zhao, X. (2022) Propagation Dynamics for Time-Periodic and Partially Degenerate Reaction-Diffusion Systems. SIAM Journal on Mathematical Analysis, 54, 1860- 1897. [Google Scholar] [CrossRef
[16] Yosida, K. (2012) Functional Analysis. Springer Science & Business Media.
[17] Liang, X. and Zhao, X. (2006) Asymptotic Speeds of Spread and Traveling Waves for Monotone Semiflows with Applications. Communications on Pure and Applied Mathematics, 60, 1-40. [Google Scholar] [CrossRef
[18] Liang, X., Yi, Y. and Zhao, X. (2006) Spreading Speeds and Traveling Waves for Periodic Evolution Systems. Journal of Differential Equations, 231, 57-77. [Google Scholar] [CrossRef
[19] Bai, Z., Lou, Y. and Zhao, X. (2022) Spatial Dynamics of Species with Annually Synchronized Emergence of Adults. Journal of Nonlinear Science, 32, Article No. 78. [Google Scholar] [CrossRef
[20] Zhao, X.-Q. (2003) Dynamical Systems in Population Biology, Volume 16. Springer.