| [1] | Bachelier, L. (1900) Théorie de la spéculation. Annales Scientifiques de l’École Normale Supé rieure,  17,  21-86. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [2] | Samuelson, P.A. (2015) Rational Theory of Warrant Pricing. In:  Grünbaum, F., van Moer- beke, P. and Moll, V., Eds., Henry P. McKean Jr. Selecta. Contemporary Mathematicians,
Birkhäuser,  195-232. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [3] | Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81, 637-654. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [4] | d’Halluin, Y., Forsyth, P.A. and Labahn, G. (2004) A Penalty Method for American Options with Jump Diffusion Processes. Numerische Mathematik, 97, 321-352. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | Khabir, M.H.M. and Patidar, K.C. (2012) Spline Approximation Method to Solve an Option Pricing Problem. Journal of Difference Equations and Applications, 18, 1801-1816. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | Cox, J.C., Ingersoll, J.E. and Ross, S.A. (2005) A Theory of the Term Structure of Interest Rates. In: Bhattacharya, S. and Constantinides, G.M., Eds., Theory of Valuation, World Scientific,  129-164. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Vasicek, O. (1977) An Equilibrium Characterization of the Term Structure. Journal of Finan- cial Economics, 5, 177-188. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [8] | Cox, J.C. (1996) The Constant Elasticity of Variance Option Pricing Model. The Journal of Portfolio Management, 23, 15-17. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [9] | Park, J.J., Jang, H.J. and Jang, J. (2020) Pricing Arithmetic Asian Options under Jump Diffusion CIR Processes. Finance Research Letters, 34, Article 101269. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [10] | Carr, P., Itkin, A. and Muravey, D. (2020) Semi-Closed Form Prices of Barrier Options in the Time-Dependent CEV and CIR Models. The Journal of Derivatives, 28, 26-50. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [11] | Lv, G., Xu, P. and Zhang, Y. (2023) Pricing of Vulnerable Options Based on an Uncertain CIR Interest Rate Model. AIMS Mathematics, 8, 11113-11130. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Goldman, M.B., Sosin, H.B. and Gatto, M.A. (1979) Path Dependent Options: “Buy at the Low, Sell at the High”. The Journal of Finance, 34, 1111-1127. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | 姜礼尚. 期权定价的数学模型和方法 [M]. 北京: 高等教育出版社, 2003. | 
                     
                                
                                    
                                        | [14] | 袁国军, 杜雪樵. 跳 -扩散模型中回望期权的定价研究 [J]. 合肥工业大学学报 (自然科学版), 2006, 29(10):  1302-1305. | 
                     
                                
                                    
                                        | [15] | 张艳秋, 杜雪樵. 随机利率下的回望期权的定价 [J]. 合肥工业大学学报 (自然科学版), 2007, 30(4):  515-517. | 
                     
                                
                                    
                                        | [16] | 冯德育. 分数布朗运动条件下回望期权的定价研究 [J]. 北方工业大学学报, 2009, 21(1): 67-72. | 
                     
                                
                                    
                                        | [17] | 黄东南, 周圣武. 基于跳扩散过程的回望期权定价的数值算法 [J]. 大学数学, 2019, 35(1): 14-19. | 
                     
                                
                                    
                                        | [18] | 顾哲煜. 混合双分数布朗运动模型下回望期权定价 [J]. 淮海工学院学报 (自然科学版), 2019,28(1): 8-13. | 
                     
                                
                                    
                                        | [19] | Cao, J. and Li, C. (2013) Finite Difference Scheme for the Time-Space Fractional Diffusion Equations. Open Physics, 11, 1440-1456. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Li, C., Chen, A. and Ye, J. (2011) Numerical Approaches to Fractional Calculus and Fractional Ordinary Differential Equation. Journal of Computational Physics, 230, 3352-3368. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [21] | Gao, G., Sun, Z. and Zhang, H. (2014) A New Fractional Numerical Differentiation Formula to Approximate the Caputo Fractional Derivative and Its Applications. Journal of Computational Physics, 259, 33-50. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [22] | Alikhanov, A.A. (2015) A New Difference Scheme for the Time Fractional Diffusion Equation.
Journal of Computational Physics, 280, 424-438. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Cao,  J.Y.,  Xu,  C.J. and Wang,  Z.Q. (2014) A High Order Finite Difference/Spectral Approximations to the Time Fractional Diffusion Equations. Advanced Materials Research, 875,781-785. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | Cao, J., Li, C. and Chen, Y. (2015) High-Order Approximation to Caputo Derivatives and Caputo-Type Advection-Diffusion Equations (II). Fractional Calculus and Applied Analysis, 18,  735-761. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | Mokhtari, R. and Mostajeran, F. (2019) A High Order Formula to Approximate the Caputo Fractional Derivative. Communications on Applied Mathematics and Computation, 2, 1-29. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [26] | Wyss, W. (2000) The Fractional Black-Scholes Equation. Fractional Calculus and Applied Analysis, 3, 51-61. | 
                     
                                
                                    
                                        | [27] | Jumarie, G. (2008) Stock Exchange Fractional Dynamics Defined as Fractional Exponential Growth Driven by (Usual) Gaussian White Noise. Application to Fractional Black-Scholes Equations. Insurance: Mathematics and Economics, 42, 271-287. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [28] | Zhang, H., Liu, F., Turner, I. and Yang, Q. (2016) Numerical Solution of the Time Fractional Black-Scholes Model Governing European Options. Computers & Mathematics with Applica- tions,  71,  1772-1783. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [29] | Nourian, F., Lakestani, M., Sabermahani, S. and Ordokhani, Y. (2022) Touchard Wavelet Technique for Solving Time-Fractional Black-Scholes Model. Computational and Applied Math- ematics, 41, Article No. 150. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [30] | Taghipour, M. and Aminikhah, H. (2022) A Spectral Collocation Method Based on Fraction- al Pell Functions for Solving Time-Fractional Black-Scholes Option Pricing Model. Chaos, Solitons & Fractals, 163, Article 112571. [Google Scholar] [CrossRef] |