撤稿:基于不同缺陷态结构的声学超材料振动能量回收研究
Study on Vibration Energy Recovery of Acoustic Metamaterials Based on Different Defect State Structures
摘要: 撤稿声明: “ 基于不同缺陷态结构的声学超材料振动能量回收研究”一文刊登在2024年7月出版的《应用物理》2024年第14卷第7期第550-559页上。由于数据有误,计算结果有问题,根据国际出版流程,编委会现决定撤除此稿件,保留原出版出处: 黄子龙. 基于不同缺陷态结构的声学超材料振动能量回收研究[J]. 应用物理, 2024, 14(7): 550-559. https://doi.org/10.12677/app.2024.147059 并对此撤稿带来的不便致以歉意。
文章引用:  

参考文献

[1] Kushwaha, M.S., Halevi, P., Dobrzynski, L. and Djafari-Rouhani, B. (1993) Acoustic Band Structure of Periodic Elastic Composites. Physical Review Letters, 71, 2022-2025.
https://doi.org/10.1103/physrevlett.71.2022
[2] 黄唯纯, 颜士玲, 李鑫, 等. 关于声学超构材料名词术语的探讨[J]. 中国材料进展, 2021, 40(1): 1-6+20-21.
[3] Thomes, R.L., Beli, D. and De Marqui, C. (2022) Space-Time Wave Localization in Electromechanical Metamaterial Beams with Programmable Defects. Mechanical Systems and Signal Processing, 167, Article ID: 108550.
https://doi.org/10.1016/j.ymssp.2021.108550
[4] Chen, Z., Guo, B., Yang, Y. and Cheng, C. (2014) Metamaterials-Based Enhanced Energy Harvesting: A Review. Physica B: Condensed Matter, 438, 1-8.
https://doi.org/10.1016/j.physb.2013.12.040
[5] Birir, J.K., Gatari, M.J., Syed Akbar Ali, M.S. and Rajagopal, P. (2024) Metamaterial Enhanced Subwavelength Imaging of Inaccessible Defects in Guided Ultrasonic Wave Inspection. NDT & E International, 143, Article ID: 103070.
https://doi.org/10.1016/j.ndteint.2024.103070
[6] Okudan, G., Xu, C., Danawe, H., Tol, S. and Ozevin, D. (2022) Controlling the Thickness Dependence of Torsional Wave Mode in Pipe-Like Structures with the Gradient-Index Phononic Crystal Lens. Ultrasonics, 124, Article ID: 106728.
https://doi.org/10.1016/j.ultras.2022.106728
[7] Fu, K., Zhao, Z. and Jin, L. (2019) Programmable Granular Metamaterials for Reusable Energy Absorption. Advanced Functional Materials, 29, Article ID: 1901258.
https://doi.org/10.1002/adfm.201901258
[8] 李晓春, 易秀英, 肖清武, 等. 三组元声子晶体中的缺陷态[J]. 物理学报, 2006(5): 2300-2305.
[9] Motaei, F. and Bahrami, A. (2022) Energy Harvesting from Sonic Noises by Phononic Crystal Fibers. Scientific Reports, 12, Article No. 10522.
https://doi.org/10.1038/s41598-022-14134-9
[10] Ma, T., Fan, Q., Li, Z., Zhang, C. and Wang, Y. (2020) Flexural Wave Energy Harvesting by Multi-Mode Elastic Metamaterial Cavities. Extreme Mechanics Letters, 41, Article ID: 101073.
https://doi.org/10.1016/j.eml.2020.101073
[11] Sun, K.H., Kim, J.E., Kim, J. and Song, K. (2017) Sound Energy Harvesting Using a Doubly Coiled-Up Acoustic Metamaterial Cavity. Smart Materials and Structures, 26, Article ID: 075011.
https://doi.org/10.1088/1361-665x/aa724e
[12] Chuang, K., Zhang, Z. and Wang, H. (2016) Experimental Study on Slow Flexural Waves around the Defect Modes in a Phononic Crystal Beam Using Fiber Bragg Gratings. Physics Letters A, 380, 3963-3969.
https://doi.org/10.1016/j.physleta.2016.09.055
[13] Sigalas, M.M. (1997) Elastic Wave Band Gaps and Defect States in Two-Dimensional Composites. The Journal of the Acoustical Society of America, 101, 1256-1261.
https://doi.org/10.1121/1.418156
[14] Yao, Z., Yu, G., Wang, Y. and Shi, Z. (2009) Propagation of Bending Waves in Phononic Crystal Thin Plates with a Point Defect. International Journal of Solids and Structures, 46, 2571-2576.
https://doi.org/10.1016/j.ijsolstr.2009.02.002
[15] Li, Y., Zhu, L., Chen, T., et al. (2018) Elastic Wave Confinement and Absorption in a Dissipative Metamaterial. Indian Journal of Pure & Applied Physics, 56, 158-163.
[16] Jo, S., Yoon, H., Shin, Y.C., Choi, W., Park, C., Kim, M., et al. (2020) Designing a Phononic Crystal with a Defect for Energy Localization and Harvesting: Supercell Size and Defect Location. International Journal of Mechanical Sciences, 179, Article ID: 105670.
https://doi.org/10.1016/j.ijmecsci.2020.105670
[17] Kim, S., Choi, J., Seung, H.M., Jung, I., Ryu, K.H., Song, H., et al. (2022) Gradient-Index Phononic Crystal and Helmholtz Resonator Coupled Structure for High-Performance Acoustic Energy Harvesting. Nano Energy, 101, Article ID: 107544.
https://doi.org/10.1016/j.nanoen.2022.107544
[18] He, Z., Zhang, G., Chen, X., Cong, Y., Gu, S. and Hong, J. (2023) Elastic Wave Harvesting in Piezoelectric-Defect-Introduced Phononic Crystal Microplates. International Journal of Mechanical Sciences, 239, Article ID: 107892.
https://doi.org/10.1016/j.ijmecsci.2022.107892
[19] Xiang, H., Chai, Z., Kou, W., Zhong, H. and Xiang, J. (2024) An Investigation of the Energy Harvesting Capabilities of a Novel Three-Dimensional Super-Cell Phononic Crystal with a Local Resonance Structure. Sensors, 24, Article No. 361.
https://doi.org/10.3390/s24020361
[20] Deng, T., Zhao, L. and Jin, F. (2024) Dual-Functional Perforated Metamaterial Plate for Amplified Energy Harvesting of Both Acoustic and Flexural Waves. Thin-Walled Structures, 197, Article ID: 111615.
https://doi.org/10.1016/j.tws.2024.111615