学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
应用数学进展
Vol. 13 No. 8 (August 2024)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
二维非线性对流扩散问题的Galerkin方法
Galerkin’s Method for Two-Dimensional Nonlinear Convection-Diffusion Problems
DOI:
10.12677/AAM.2024.138341
,
PDF
,
,
,
被引量
作者:
罗 宏
:长沙理工大学数学与统计学院,湖南 长沙
关键词:
非线性对流扩散方程
;
Galerkin有限元法
;
误差估计
;
Nonlinear Convection-Diffusion Equation
;
Galerkin Finite Element Method
;
Error Estimation
摘要:
本文研究了一种具有狄利克雷边界的二维非线性对流扩散方程的Galerkin有限元法。 基于一 种具有两个内置参数的特殊变分形式,提出了半离散Galerkin有限元格式,并且理论上导出 了半离散Galerkin有限元格式H
1
范数下最优误差估计。 给出两个数值实验,时间方向分别采 用Grank-Nicolson格式和向后欧拉格式进行离散,验证理论分析结果。
Abstract:
In this paper, a Galerkin finite element method for a two-dimensional nonlinear convection-diffusion equation with a Delicacy boundary is investigated. Based on a special variational form with two built-in parameters, a semi-discrete Galerkin finite element format is proposed, and the optimal error estimate in the H
1
paradigm of the semi-discrete Galerkin finite element format is derived theoretically. Two numerical experiments are given, where the time direction is discretised in Grank-Nicolson for- mat and backward Eulerian format, respectively, to validate the theoretical analysis.
文章引用:
罗宏. 二维非线性对流扩散问题的Galerkin方法[J]. 应用数学进展, 2024, 13(8): 3585-3591.
https://doi.org/10.12677/AAM.2024.138341
参考文献
[1]
Wang, Y. and Lan, X. (2009) Higher-order Monotone Iterative Methods for Finite Difference Systems of Nonlinear Reaction-Diffusion-Convection Equations. Applied Numerical Mathemat- ics, 59, 2677-2693.
https://doi.org/10.1016/j.apnum.2009.06.003
[2]
Wang, H., Shu, C. and Zhang, Q. (2016) Stability Analysis and Error Estimates of Local Dis-continuous Galerkin Methods with Implicit-Explicit Time-Marching for Nonlinear Convection- Diffusion Problems. Applied Mathematics and Computation, 272, 237-258.
https://doi.org/10.1016/j.amc.2015.02.067
[3]
Bessemoulin-Chatard, M. (2012) A Finite Volume Scheme for Convection-Diffusion Equations with Nonlinear Diffusion Derived from the Scharfetter-Gummel Scheme. Numerische Mathe- matik, 121, 637-670.
https://doi.org/10.1007/s00211-012-0448-x
[4]
Li, W., Gao, F. and Cui, J. (2024) A Weak Galerkin Finite Element Method for Nonlinear Convection-Diffusion Equation. Applied Mathematics and Computation, 461, Article 128315.
https://doi.org/10.1016/j.amc.2023.128315
[5]
Thom´ee, V. (2007) Galerkin Finite Element Methods for Parabolic Problems. 2nd Edition, Vol. 25, Springer Science and Business Media.
投稿
为你推荐
友情链接
科研出版社
开放图书馆