二维非线性对流扩散问题的Galerkin方法
Galerkin’s Method for Two-Dimensional Nonlinear Convection-Diffusion Problems
摘要: 本文研究了一种具有狄利克雷边界的二维非线性对流扩散方程的Galerkin有限元法。 基于一 种具有两个内置参数的特殊变分形式,提出了半离散Galerkin有限元格式,并且理论上导出 了半离散Galerkin有限元格式H1范数下最优误差估计。 给出两个数值实验,时间方向分别采 用Grank-Nicolson格式和向后欧拉格式进行离散,验证理论分析结果。
Abstract: In this paper, a Galerkin finite element method for a two-dimensional nonlinear convection-diffusion equation with a Delicacy boundary is investigated. Based on a special variational form with two built-in parameters, a semi-discrete Galerkin finite element format is proposed, and the optimal error estimate in the H1 paradigm of the semi-discrete Galerkin finite element format is derived theoretically. Two numerical experiments are given, where the time direction is discretised in Grank-Nicolson for- mat and backward Eulerian format, respectively, to validate the theoretical analysis.
文章引用:罗宏. 二维非线性对流扩散问题的Galerkin方法[J]. 应用数学进展, 2024, 13(8): 3585-3591. https://doi.org/10.12677/AAM.2024.138341

参考文献

[1] Wang, Y. and Lan, X. (2009) Higher-order Monotone Iterative Methods for Finite Difference Systems of Nonlinear Reaction-Diffusion-Convection Equations. Applied Numerical Mathemat- ics, 59, 2677-2693.
https://doi.org/10.1016/j.apnum.2009.06.003
[2] Wang, H., Shu, C. and Zhang, Q. (2016) Stability Analysis and Error Estimates of Local Dis-continuous Galerkin Methods with Implicit-Explicit Time-Marching for Nonlinear Convection- Diffusion Problems. Applied Mathematics and Computation, 272, 237-258.
https://doi.org/10.1016/j.amc.2015.02.067
[3] Bessemoulin-Chatard, M. (2012) A Finite Volume Scheme for Convection-Diffusion Equations with Nonlinear Diffusion Derived from the Scharfetter-Gummel Scheme. Numerische Mathe- matik, 121, 637-670.
https://doi.org/10.1007/s00211-012-0448-x
[4] Li, W., Gao, F. and Cui, J. (2024) A Weak Galerkin Finite Element Method for Nonlinear Convection-Diffusion Equation. Applied Mathematics and Computation, 461, Article 128315.
https://doi.org/10.1016/j.amc.2023.128315
[5] Thom´ee, V. (2007) Galerkin Finite Element Methods for Parabolic Problems. 2nd Edition, Vol. 25, Springer Science and Business Media.