关于G-代数的广义膨胀的几个结论
On the Generalized Inflated G-Algebras
                  
              
    
                  
                    
                    摘要: 
	在本文中,我们借助G-代数的(内)张量积定义了广义膨胀G-代数这个概念,得到了广义膨胀G-代数是局部G-代数的充要条件,推广了关于块覆盖和块控制的相应结论,我们还得到了关于广义膨胀G-代数的亏群的一个刻画。
                 
              
                
                    Abstract: We defined the generalized inflated G-algebra, and obtained the necessary and sufficient condition for the local generalized inflated G-algebra. We also studied the blocks of finite groups and that of its factor groups with the inflated G-algebra, and hence promoted the results on the block cover and the block control, moreover, we characterized the defected group of the generalized inflated G-algebra.
                
                   
                  
    
  
 
     
    
    
                
         
                
                
                 
                
                    
                        参考文献
                        
                            
                                    
                                        | [1] | B. Huppert, N. Blacburn. Finite groups II. Berlin: Springer, 1982. | 
                     
                                
                                    
                                        | [2] | T. Ikeda. Some properties of interior G-algebras. Hokkaido Mathematical Journal, 1986, 15: 453-467. | 
                     
                                
                                    
                                        | [3] | G. Karpilovsky. Group representations, Vol. 3, North-Holland Mathematics Studies 180. Amsterdam: Elsevier Science B.V., 1994. | 
                     
                                
                                    
                                        | [4] | G. Karpilovsky. Group representations, Vol. 5, North-Holland Mathematics Studies 183. Amsterdam: Elsevier Science B.V., 1996. | 
                     
                                
                                    
                                        | [5] | G. Karpilovsky. Induced modules over group algebras, North-Holland Mathematics Studies 161. Amsterdam: Elsevier Science B.V., 1990. | 
                     
                                
                                    
                                        | [6] | G. Karpilovsky. Symmetric and G-algebras: With applications to group representations. Berlin: Kluwer Academic Publishers, 1990. | 
                     
                                
                                    
                                        | [7] | J. Thevenaz. G-algebras and modular representation theory. Oxford: Oxford Clarendon Press, 1995. | 
                     
                                
                                    
                                        | [8] | M. Collins. Blocks, normal subgroups, and Brauer’s third main theory. Journal of Algebra, 1999, 213: 69-76. | 
                     
                                
                                    
                                        | [9] | B. Kulshammer. Lectures on block theory, LMSLNS 161. Cambridge: Cambridge University Press, 1991. | 
                     
                                
                                    
                                        | [10] | A. M. Aglhamdi, A. A. Khammash. Defect groups of tensor modules. Journal of Pure and Applied Algebra, 2002, 167(2-3): 165-173. |