| [1] | M. W. Finnis, J. E. Sinclair. A simple empirical N-body potential for transition metals. Philosophical Magazine A, 1984, 50(1): 45-55. | 
                     
                                
                                    
                                        | [2] | A. M. Guellil, J. B. Adams. The application of the analytic em- bedded atom method to bcc metals and alloys. Journal of Mate- rials Research, 1992, 7(3): 639-652. | 
                     
                                
                                    
                                        | [3] | B. W. Zhang, Y. F. Ouyang. Theoretical calculation of thermo- dynamic data for bcc binary alloys with the embedded-atom me- thod. Physical Review B, 1993, 48(5): 3022-3029. | 
                     
                                
                                    
                                        | [4] | W. Y. Hu, B. W. Zhang, X. L. Shu and B. Y. Huang. Calculation of formation enthalpies and phase stability for Ru-Al alloys us- ing an analytic embedded atom model. Journal of Alloys and Compounds, 1999, 287(1-2): 159-162. | 
                     
                                
                                    
                                        | [5] | W. Y. Hu, B. W. Zhang, B. Y. Huang, F. Gao and D. J. Bacon. Analytic modified embedded atom potentials for HCP metals. Journal of Physics: Condensed Matter, 2001, 13(6): 1193-1213. | 
                     
                                
                                    
                                        | [6] | J. M. Zhang, G. X. Chen and K. W. Xu. Self-diffusion of BCC transition metals calculated with MAEAM. Physica B, 2007, 390(1-2): 320-324. | 
                     
                                
                                    
                                        | [7] | M. I. Pascuet, R. C. Pasianot and A. M. Monti. Computer simu- lation of surface-point defects interaction in hcp metals. Journal of Molecular Catalysis A, 2001, 167: 165-170. | 
                     
                                
                                    
                                        | [8] | W. Schüle, R. Scholz. On point defect and interactions in metals. Tokyo: University of Tokyo Press, 1982: 257. | 
                     
                                
                                    
                                        | [9] | B. T. A. Mckee, W. Trifthauser and A. T. Stewart. Vacancy-for- mation energies in metals from positron annihilation. Physical Review Letters, 1972, 28: 358-360. | 
                     
                                
                                    
                                        | [10] | J. B. Adams, S. M. Foiles and W. G. Wolfer. Self-diffusion and impurity diffusion of free metals using the five-frequency model and the embedded atom method. Journal of Materials Research, 1989, 4(1): 102-112. | 
                     
                                
                                    
                                        | [11] | N. L. Peterson. Isotope effect in self-diffusion in palladium. Physical Review, 1964, 136: A568-A574. | 
                     
                                
                                    
                                        | [12] | B. W. Zhang and W. Y. Hu, X. L. Shu. Theory of embedded atom method and its application to material science. Changsha: Hu’nan University Press, 2003: 84-85. | 
                     
                                
                                    
                                        | [13] | S. N. Foiles, M. I. Baskes and M. S. Daw. Embedded-atom- method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 1986, 33(12): 7983-7991. |