|
[1]
|
Biham, E. and Shamir, A. (1991) Differential Cryptanalysis of DES-Like Cryptosystems. Jour- nal of Cryptology, 4, 3-72. [Google Scholar] [CrossRef]
|
|
[2]
|
% Nyberg, K. (1994) Differentially Uniform Mappings for Cryptography. In: Helleseth, T., Ed., Lecture Notes in Computer Science, Springer, 55-64. 6 [Google Scholar] [CrossRef]
|
|
[3]
|
Borisov, N., Chew, M., Johnson, R. and Wagner, D. (2002) Multiplicative Differentials. In: Daemen, J. and Rijmen, V., Eds., Lecture Notes in Computer Science, Springer, 17-33. 2 [Google Scholar] [CrossRef]
|
|
[4]
|
Ellingsen, P., Felke, P., Riera, C., Staˇnicˇa, P. and Tkachenko, A. (2020) C-Differentials, Multi- plicative Uniformity, and (Almost) Perfect c-Nonlinearity. IEEE Transactions on Information Theory, 66, 5781-5789. [Google Scholar] [CrossRef]
|
|
[5]
|
Wu, Y., Li, N. and Zeng, X. (2021) New PcN and APcN Functions over Finite Fields. Designs, Codes and Cryptography, 89, 2637-2651. [Google Scholar] [CrossRef]
|
|
[6]
|
Hasan, S.U., Pal, M. and Staˇnicˇa, P. (2022) The c-Differential Uniformity and Boomerang Uniformity of Two Classes of Permutation Polynomials. IEEE Transactions on Information Theory, 68, 679-691. [Google Scholar] [CrossRef]
|
|
[7]
|
Jeong, J., Koo, N. and Kwon, S. (2023) On Non-Monomial APcN Permutations over Finite Fields of Even Characteristic. Finite Fields and Their Applications, 89, Article 102196. [Google Scholar] [CrossRef]
|
|
[8]
|
Liu, Q., Huang, Z., Xie, J., Liu, X. and Zou, J. (2023) The c-Differential Uniformity and Boomerang Uniformity of Three Classes of Permutation Polynomials over F2n . Finite Fields and Their Applications, 89, Article 102212. [Google Scholar] [CrossRef]
|
|
[9]
|
Mesnager, S., Mandal, B. and Msahli, M. (2021) Survey on Recent Trends Towards Generalized Differential and Boomerang Uniformities. Cryptography and Communications, 14, 691-735. [Google Scholar] [CrossRef]
|
|
[10]
|
Wagner, D. (1999) The Boomerang Attack. In: Knudsen, L., Ed., Lecture Notes in Computer Science, Springer, 156-170. 12 [Google Scholar] [CrossRef]
|
|
[11]
|
Cid, C., Huang, T., Peyrin, T., Sasaki, Y. and Song, L. (2018) Boomerang Connectivity Table: A New Cryptanalysis Tool. In: Nielsen, J. and Rijmen, V., Eds., Lecture Notes in Computer Science, Springer International Publishing, 683-714. 22 [Google Scholar] [CrossRef]
|
|
[12]
|
Boura, C. and Canteaut, A. (2018) On the Boomerang Uniformity of Cryptographic Sboxes. IACR Transactions on Symmetric Cryptology, No. 3, 290-310. [Google Scholar] [CrossRef]
|
|
[13]
|
Li, K., Qu, L., Sun, B. and Li, C. (2019) New Results about the Boomerang Uniformity of Permutation Polynomials. IEEE Transactions on Information Theory, 65, 7542-7553. [Google Scholar] [CrossRef]
|
|
[14]
|
Lidl, R. and Niederreiter, H. (1997) Finite Fields, Encyclopedia of Mathematics and Its Ap- plications. Vol. 20, Cambridge University Press.
|
|
[15]
|
Helleseth, T. and Kholosha, A. (2006) Monomial and Quadratic Bent Functions over the Finite Fields of Odd Characteristic. IEEE Transactions on Information Theory, 52, 2018- 2032. [Google Scholar] [CrossRef]
|
|
[16]
|
Charpin, P. and Kyureghyan, G.M. (2008) On a Class of Permutation Polynomials over F2n . In: Golomb, S.W., Parker, M.G., Pott, A. and Winterhof, A., Eds., Lecture Notes in Computer Science, Springer, 368-376. 32 [Google Scholar] [CrossRef]
|
|
[17]
|
Roy, S. (2012) Generalization of Some Results on Gold and Kasami-Welch Functions. Finite Fields and Their Applications, 18, 894-903. [Google Scholar] [CrossRef]
|