|
[1]
|
Chemin, J.Y., Desjardins, B., Gallagher, I. and Grenier, E. (2006) Mathematical Geophysics:
An Introduction to Rotating Fluids and the Navier-Stokes Equations. Oxford University Press,
32.
|
|
[2]
|
Metzler, R. and Klafter, J. (2000) The Random Walk's Guide to Anomalous Diffusion: A
Fractional Dynamics Approach. Physics Reports, 339, 1-77.[CrossRef]
|
|
[3]
|
Leray, J. (1934) Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Mathemat-
ica, 63, 193-248. [Google Scholar] [CrossRef]
|
|
[4]
|
Fujita, H. and Kato, T. (1964) On the Navier-Stokes Initial Value Problem. I. Archive for
Rational Mechanics and Analysis, 16, 269-315. [Google Scholar] [CrossRef]
|
|
[5]
|
Kato, T. (1984) Strong Lp-Solutions of the Navier-Stokes Equation in Rm, with Applications to
Weak Solutions. Mathematische Zeitschrift, 187, 471-480.[CrossRef]
|
|
[6]
|
Cannone, M. (1997) A Generalization of a Theorem by Kato on Navier-Stokes Equations.
Revista Matematica Iberoamericana, 13, 515-541. [Google Scholar] [CrossRef]
|
|
[7]
|
Koch, H. and Tataru, D. (2001) Well-Posedness for the Navier-Stokes Equations. Advances in
Mathematics, 157, 22-35. [Google Scholar] [CrossRef]
|
|
[8]
|
Mercado, J.R., Guido, E.P., SSnchez-Sesma, A.J.,I~niguez, M. and Gonzalez, A. (2012) Analysis
of the Blasius' Formula and the Navier-Stokes Fractional Equation. In: Klapp, J., Medina,
A., Cros, A. and Vargas, C., Eds., Fluid Dynamics in Physics, Engineering and Environmental
Applications, Springer Berlin Heidelberg, 475-480.
44[CrossRef]
|
|
[9]
|
Lions, J.L. (1969) Quelques methodes de resolution des problemes aux limites non lineaires.
Dunod.
|
|
[10]
|
Wu, J. (2003) Generalized MHD Equations. Journal of Differential Equations, 195, 284-312. [Google Scholar] [CrossRef]
|
|
[11]
|
Wu, J. (2005) Lower Bounds for an Integral Involving Fractional Laplacians and the Generalized
Navier-Stokes Equations in Besov Spaces. Communications in Mathematical Physics,
263, 803-831.[CrossRef]
|
|
[12]
|
Yu, X. and Zhai, Z. (2012) Well-Posedness for Fractional Navier-Stokes Equations in the
Largest Critical Spaces B∞,∞-(2β-1)(Rn). Mathematical Methods in the Applied Sciences, 35, 676-
683. [Google Scholar] [CrossRef]
|
|
[13]
|
Babin, A., Mahalov, A. and Nicolaenko, B. (1997) Regularity and Integrability of 3D Euler
and Navier-Stokes Equations for Rotating Fluids. Asymptotic Analysis, 15, 103-150.[CrossRef]
|
|
[14]
|
Nicolaenko, B., Babin, A. and Mahalov, A. (1999) Global Regularity of 3D Rotating Navier-
Stokes Equations for Resonant Domains. Indiana University Mathematics Journal, 48, 1133-
1176.[CrossRef]
|
|
[15]
|
Chemin, J.-Y., Desjardins, B., Gallagher, I. and Grenier, E. (2002) Anisotropy and Dispersion
in Rotating Fluids. In: Studies in Mathematics and Its Applications, Vol. 31, Elsevier, 171-192.[CrossRef]
|
|
[16]
|
Iwabuchi, T. and Takada, R. (2013) Global Solutions for the Navier-Stokes Equations in the
Rotational Framework. Mathematische Annalen, 357, 727-741.[CrossRef]
|
|
[17]
|
Koh, Y., Lee, S. and Takada, R. (2014) Dispersive Estimates for the Navier-Stokes Equations
in the Rotational Framework. Advances in Differential Equations, 19, 857-878.[CrossRef]
|
|
[18]
|
Sun, J., Yang, M. and Cui, S. (2016) Existence and Analyticity of Mild Solutions for the 3D
Rotating Navier-Stokes Equations. Annali di Matematica Pura ed Applicata, 196, 1203-1229.[CrossRef]
|
|
[19]
|
Sun, X. and Ding, Y. (2019) Dispersive Effect of the Coriolis Force and the Local Well-
Posedness for the Fractional Navier-Stokes-Coriolis System. Journal of Evolution Equations,
20, 335-354.[CrossRef]
|
|
[20]
|
Ahn, J., Kim, J. and Lee, J. (2021) Coriolis Effect on Temporal Decay Rates of Global Solutions
to the Fractional Navier-Stokes Equations. Mathematische Annalen, 383, 259-289.[CrossRef]
|
|
[21]
|
Kishimoto, N. and Yoneda, T. (2017) Global Solvability of the Rotating Navier-Stokes Equations
with Fractional Laplacian in a Periodic Domain. Mathematische Annalen, 372, 743-779.[CrossRef]
|
|
[22]
|
Bahouri, H., Chemin, J.Y. and Danchin, R. (2011) Fourier Analysis and Nonlinear Partial Differential
Equations. In: Grundlehren der mathematischen Wissenschaften, Vol. 343, Springer-
Verlag.
|
|
[23]
|
Abidi, H., Gui, G. and Zhang, P. (2013) Well-Posedness of 3-D Inhomogeneous Navier-Stokes
Equations with Highly Oscillatory Initial Velocity Field. Journal de Mathematiques Pures et
Appliquees, 100, 166-203.[CrossRef]
|
|
[24]
|
Hieber, M. and Shibata, Y. (2009) The Fujita-Kato Approach to the Navier-Stokes Equations
in the Rotational Framework. Mathematische Zeitschrift, 265, 481-491.[CrossRef]
|
|
[25]
|
Zhai, Z. (2010) Global Well-Posedness for Nonlocal Fractional Keller-Segel Systems in Critical
Besov Spaces. Nonlinear Analysis: Theory, Methods Applications, 72, 3173-3189.[CrossRef]
|
|
[26]
|
Tomas, P.A. (1975) A Restriction Theorem for the Fourier Transform. Bulletin of the American
Mathematical Society, 81, 477-478. [Google Scholar] [CrossRef]
|
|
[27]
|
Strichartz, R.S. (1977) Restrictions of Fourier Transforms to Quadratic Surfaces and Decay of
Solutions of Wave Equations. Duke Mathematical Journal, 44, 705-714.[CrossRef]
|