|
[1]
|
Jeanjean, L., Jendrej, J., Le, T.T. and Visciglia, N. (2022) Orbital Stability of Ground States
for a Sobolev Critical Schrodinger Equation. Journal de Mathematiques Pures et Appliquees,
164, 158-179.[CrossRef]
|
|
[2]
|
Lieb, E.H. and Yau, H. (1987) The Chandrasekhar Theory of Stellar Collapse as the Limit of
Quantum Mechanics. Communications in Mathematical Physics, 112, 147-174.[CrossRef]
|
|
[3]
|
Banquet, C. and J. Villamizar-Roa, E. (2020) On the Management Fourth-Order Schrodinger-
Hartree Equation. Evolution Equations & Control Theory, 9, 865-889.[CrossRef]
|
|
[4]
|
Shi, C. (2022) Existence of Stable Standing Waves for the Nonlinear Schrodinger Equation
with Mixed Power-Type and Choquard-Type Nonlinearities. AIMS Mathematics, 7, 3802-3825.[CrossRef]
|
|
[5]
|
Tarek, S. (2020) Non-Linear Bi-Harmonic Choquard Equations. Communications on Pure and
Applied Analysis, 11, 5033-5057.
|
|
[6]
|
Karpman, V.I. (1996) Stabilization of Soliton Instabilities by Higher-Order Dispersion: Fourth-
Order Nonlinear Schrodinger-Type Equations. Physical Review E, 53, R1336-R1339.[CrossRef] [PubMed]
|
|
[7]
|
Karpman, V.I. and Shagalov, A.G. (2000) Stability of Solitons Described by Nonlinear
Schrodinger-Type Equations with Higher-Order Dispersion. Physica D: Nonlinear Phenom-
ena, 144, 194-210.[CrossRef]
|
|
[8]
|
Fernandez, A.J., Jeanjean, L., Mandel, R. and Maris, M. (2022) Non-Homogeneous Gagliardo-
Nirenberg Inequalities in RN and Application to a Biharmonic Non-Linear Schrodinger Equation.
Journal of Differential Equations, 330, 1-65.[CrossRef]
|
|
[9]
|
Luo, T., Zheng, S. and Zhu, S. (2022) The Existence and Stability of Normalized Solutions
for a Bi-Harmonic Nonlinear Schrodinger Equation with Mixed Dispersion. Acta Mathematica
Scientia, 43, 539-563.[CrossRef]
|
|
[10]
|
Cho, Y., Hajaiej, H., Hwang, G. and Ozawa, T. (2013) On the Cauchy Problem of Fractional
Schrodinger Equation with Hartree Type Nonlinearity. Funkcialaj Ekvacioj, 56, 193-224.[CrossRef]
|
|
[11]
|
Feng, B. and Zhang, H. (2018) Stability of Standing Waves for the Fractional Schrodinger-
Hartree Equation. Journal of Mathematical Analysis and Applications, 460, 352-364.[CrossRef]
|
|
[12]
|
Cazenave, T. and Lions, P.L. (1982) Orbital Stability of Standing Waves for Some Nonlinear
Schroodinger Equations. Communicati
|
|
[13]
|
Bonheure, D., Casteras, J., dos Santos, E.M. and Nascimento, R. (2018) Orbitally Stable
Standing Waves of a Mixed Dispersion Nonlinear Schrodinger Equation. SIAM Journal on
Mathematical Analysis, 50, 5027-5071.[CrossRef]
|
|
[14]
|
Feng, W., Stanislavova, M. and Stefanov, A. (2018) On the Spectral Stability of Ground
States of Semi-Linear Schrodinger and Klein-Gordon Equations with Fractional Dispersion.
Communications on Pure & Applied Analysis, 17, 1371-1385.[CrossRef]
|
|
[15]
|
Posukhovskyi, I. and G. Stefanov, A. (2020) On the Normalized Ground States for the Kawahara
Equation and a Fourth Order NLS. Discrete & Continuous Dynamical Systems|A, 40,
4131-4162.[CrossRef]
|
|
[16]
|
Gerard, P. (1998) Description of the Lack of Compactness for the Sobolev Imbedding. ESAIM:
Control, Optimisation and Calculus of Variations, 3, 213-233. [Google Scholar] [CrossRef]
|
|
[17]
|
Hmidi, T. and Keraani, S. (2005) Blowup Theory for the Critical Nonlinear Schrodinger Equations
Revisited. International Mathematics Research Notices, 2005, 2815-2828.[CrossRef]
|
|
[18]
|
Yang, H., Zhang, J. and Zhu, S. (2010) Limiting Profile of the Blow-Up Solutions for the
Fourth-Order Nonlinear Schrodinger Equation. Dynamics of Partial Differential Equations, 7,
187-205.[CrossRef]
|
|
[19]
|
Carles, R., Markowich, P.A. and Sparber, C. (2008) On the Gross-Pitaevskii Equation for
Trapped Dipolar Quantum Gases. Nonlinearity, 21, 2569-2590.[CrossRef]
|
|
[20]
|
Lieb, E.H. (1983) Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities.
The Annals of Mathematics, 118, 349-374. [Google Scholar] [CrossRef]
|