形式三角矩阵环上的Gorenstein FPn- 投射模
Gorenstein FPn-Projective Module overFormal Triangular Matrix Rings
摘要: 设 T =(U BA 0)是形式三角矩阵环, 其中 A, B 是环, U 是 (B, A)-双模. 证明了当 T 是左n-凝聚环,UA是平坦模,BU 是有限生成投射模, M =(M 2 M 1 ) φM 是左 T-模,若 M1 是Gorenstein FPn 投射左A-模, M2/ImφM 是 Gorenstein FPn- 投射左 B-模,且 ϕM 是单同态,则 M 是 Gorenstein FPn-投射左 T -模. 进而: U ⊗A M1 是 Gorenstein FPn- 投射左 B-模,当且仅当, M2 是 Gorenstein FPn- 投射左 B-模.
Abstract: Let T =(U BA 0) be a formal triangular matrix ring, where A and B are rings and U is (B;A)-bimodule. It is proved that T is a left n-cocherent ring, UA is a at module, BU is a finitely generated projective module, M =(M 2 M 1 ) φM is a left T-module. If M1 is a Gorenstein FPn-projective left A-module, M2/ImφM is a Gorenstein FPn-projective left B-module and ϕM is injective. Then M is a Gorenstein FPn-projective left T-module. In this instance, U ⊗A M1 is a Gorenstein FPn-projective left B-module, if and only if, M2 is a Gorenstein FPn-projective left B-module.
文章引用:张会晶. 形式三角矩阵环上的Gorenstein FPn- 投射模[J]. 理论数学, 2024, 14(9): 1-9. https://doi.org/10.12677/PM.2024.149320

参考文献

[1] 周德旭. n-凝聚环的若干刻画[J]. 福建师范大学学报(自然科学版), 2003, 19(4): 9-12.
[2] 陈东, 胡葵. Gorenstein FPn-内射模和Gorenstein FPn-平坦模[J]. 四川师范大学学报(自然科学 版), 2019, 42(5): 674-677.
[3] 张健芳. 关于Gorenstein FPn-投射模的研究[D]: [硕士学位论文]. 成都: 成都信息工程大学, 2020.
[4] 李泳辉, 吕家风, 张东东. 形式三角矩阵环上的Gorenstein FPn-内射模[J/OL]. 浙江师范大学学 报(自然科学版), 2024: 1-9.
https://doi.org/10.16218/j.issn.1001-5051.2024.045
[5] Haghany, A. and Varadarajan, K. (1999) Study of Formal Triangular Matrix Rings. Commu- nications in Algebra, 27, 5507-5525.
https://doi.org/10.1080/00927879908826770
[6] Haghany, A. and Varadarajan, K. (2000) Study of Modules over Formal Triangular Matrix Rings. Journal of Pure and Applied Algebra, 147, 41-58.
https://doi.org/10.1016/s0022-4049(98)00129-7
[7] Mao, L. (2020) Cotorsion Pairs and Approximation Classes over Formal Triangular Matrix Rings. Journal of Pure and Applied Algebra, 224, Article 106271.
https://doi.org/10.1016/j.jpaa.2019.106271
[8] Enochs, E.E., Cort´es-Izurdiaga, M. and Torrecillas, B. (2014) Gorenstein Conditions over Triangular Matrix Rings. Journal of Pure and Applied Algebra, 218, 1544-1554.
https://doi.org/10.1016/j.jpaa.2013.12.006
[9] Bravo, D. and P´erez, M.A. (2017) Finiteness Conditions and Cotorsion Pairs. Journal of Pure and Applied Algebra, 221, 1249-1267.
https://doi.org/10.1016/j.jpaa.2016.09.008
[10] Holm, H. (2004) Gorenstein Homological Dimensions. Journal of Pure and Applied Algebra, 189, 167-193.
https://doi.org/10.1016/j.jpaa.2003.11.007