|
[1]
|
[1] 傅德薰. 流体力学数值模拟[M]. 北京: 国防工业出版社, 1993.
|
|
[2]
|
刘儒勋, 舒其望. 计算流体力学的若干新方法. 北京: 科学出版社, 2003.
|
|
[3]
|
罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.
|
|
[4]
|
Holmes P, Lumley J L, Berkooz G.Turbulence, coherent structures, dynamical systems and symmetry[M]. Cambridge: Cambridge University Press, 1996.
|
|
[5]
|
Fukunaga K. Introduction to statistical recognition[M]. New York: Academic Press, 1990.
|
|
[6]
|
Jolliffe I T. Principal component analysis[M]. Berlin: Springer-Verlag, 2002.
|
|
[7]
|
Selten F. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model[J]. Journal of the Atmospheric Sciences, 1997, 54: 2100−2114.
|
|
[8]
|
Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems[J]. Numer. Math., 2001, 90: 117−148.
|
|
[9]
|
Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics[J]. SIAM Journal on Numerical Analysis, 2002, 40: 492−515.
|
|
[10]
|
Luo Z D, Chen J, Xie Z H, et al. A reduced second-order time accurate finite element formulation based on POD for parabolic equations[J]. Sci Sin Math, 2011, 41(5): 447−460.
|
|
[11]
|
Luo Z D, Li H, Zhou Y J, et al. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem[J]. Journal of Mathematical Analysis and Applications, 2012, 385: 371−383.
|
|
[12]
|
Luo Z D, Li H, Zhou Y J, et al. A reduced finite element formulation and error estimates based on POD method for two-dimensional solute transport problems[J]. Journal of Mathematical Analysis and Applications, 2012, 385: 371−383.
|
|
[13]
|
Luo Z D, Ou Q L, Xie Z H. A reduced finite difference scheme and error estimates based on POD method for the non-stationary Stokes equation[J]. Applied Mathematics and Mechanics, 2011, 32(7): 847−858.
|
|
[14]
|
Sun P, Luo Z D, Zhou Y J. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations[J]. Applied Numerical Mathematics, 2010, 60(1-2): 154−164.
|
|
[15]
|
Luo Z D, Du J, Xie Z H, et al. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the no-stationary Navier-Stokes equations[J]. International Journal for Numerical Methods in Engineering, 2011, 88(1): 31−46.
|
|
[16]
|
Luo Z D, Xie Z H, Shang Y Q, et al. A reduced finite volume element formulation and numerical simulations based on POD for parabolic equations[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2098−2111.
|
|
[17]
|
Luo Z D, Xie Z H, Chen J. A reduced MFE formulation based on POD for the non-stationary conduction-convection problems[J]. Acta Math Scientia, 2011, 31(5): 1765−1785.
|
|
[18]
|
Luo Z D, Ou Q L, Wu J R, et al. A reduced finite element formulation based on POD for two-dimensional hyperbolic equation[J]. Acta Math. Scientia, 2012, 32(5): 1997−2009.
|
|
[19]
|
Li H R, Luo Z D, Chen J. Numerical simulation based on proper orthogonal decomposition for two-dimensional solute transport problems[J]. Applied Mathematical Modelling, 2011, 35(5): 2489−2498.
|
|
[20]
|
Luo Z D, Zhou Y J, Yang X Z. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation[J]. Applied Numerical Mathematics, 2009, 59(8): 1933−1946.
|
|
[21]
|
Luo Z D, Chen J, Sun P, et al. Finite element formulation based on proper orthogonal decomposition for parabolic equations[J]. Science in China Series A: Mathematics, 2009, 52(3): 587−596.
|
|
[22]
|
Luo Z D, Chen J, Navon I M, et al. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J]. SIAM J Numer Anal, 2008, 47(1): 1−19.
|
|
[23]
|
Luo Z D, Chen J, Navon I M, et al. An optimizing reduced PLSMFE formulation for non-stationary conduction- convection problems[J]. International Journal for Numerical Methods in Fluid, 2009, 60(4): 409−436.
|
|
[24]
|
Luo Z D, Yang X Z, Zhou Y J. A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation[J]. Journal of Computational and Applied Mathematics, 2009, 229(1): 97−107.
|
|
[25]
|
Luo Z D, Wang R W, Zhu J. Finite difference scheme based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J]. Science in China Series A: Math., 2007, 50(8): 1186−1196.
|
|
[26]
|
Luo Z D, Chen J, Zhu J, et al. An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model[J]. International Journal for Numerical Methods in Fluids, 2007, 55(2): 143−161.
|
|
[27]
|
Luo Z D, Zhu J, Wang R W, et al. Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41-44): 4184−4195.
|
|
[28]
|
Luo Z D, Li H, Shang Y Q, et al. A LSMFE formulation based on proper orthogonal decomposition for parabolic equations[J]. Finite Elements in Analysis and Design, 2012, 60: 1−12.
|
|
[29]
|
腾飞, 孙萍, 罗振东. 抛物型方程基于POD方法的时间二阶中心差的二阶精度简化有限元格式[J]. 计算数学, 2011, 33(4): 373−386.
|
|
[30]
|
Teng F, Sun P, Luo Z D. A reduced second order time accurate finite element formulation of time second order central difference based on POD approach for parabolic equations[J]. Mathematica Numerica Sinica, 2011, 33(4): 373−386.
|
|
[31]
|
Adams R A. Sobolev Spaces[M]. New York: Academic Press, 1975.
|
|
[32]
|
Girault V, Raviant P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[M]. Berlin: Spinger-Verlag, 1986.
|
|
[33]
|
Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods[M]. New York: Springer-Verlag, 1991.
|
|
[34]
|
Rudin W. Functional and Analysis (2nd Ed)[M]. McGraw-Hill Companies, Inc. 1973.
|
|
[35]
|
傅德薰. 流体力学数值模拟[M]. 北京: 国防工业出版社, 1993.
|
|
[36]
|
刘儒勋, 舒其望. 计算流体力学的若干新方法. 北京: 科学出版社, 2003.
|
|
[37]
|
罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.
|
|
[38]
|
Holmes P, Lumley J L, Berkooz G.Turbulence, coherent structures, dynamical systems and symmetry[M]. Cambridge: Cambridge University Press, 1996.
|
|
[39]
|
Fukunaga K. Introduction to statistical recognition[M]. New York: Academic Press, 1990.
|
|
[40]
|
Jolliffe I T. Principal component analysis[M]. Berlin: Springer-Verlag, 2002.
|
|
[41]
|
Selten F. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model[J]. Journal of the Atmospheric Sciences, 1997, 54: 2100−2114.
|
|
[42]
|
Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems[J]. Numer. Math., 2001, 90: 117−148.
|
|
[43]
|
Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics[J]. SIAM Journal on Numerical Analysis, 2002, 40: 492−515.
|
|
[44]
|
Luo Z D, Chen J, Xie Z H, et al. A reduced second-order time accurate finite element formulation based on POD for parabolic equations[J]. Sci Sin Math, 2011, 41(5): 447−460.
|
|
[45]
|
Luo Z D, Li H, Zhou Y J, et al. A reduced FVE formulation based on POD method and error analysis for two-dimensional viscoelastic problem[J]. Journal of Mathematical Analysis and Applications, 2012, 385: 371−383.
|
|
[46]
|
Luo Z D, Li H, Zhou Y J, et al. A reduced finite element formulation and error estimates based on POD method for two-dimensional solute transport problems[J]. Journal of Mathematical Analysis and Applications, 2012, 385: 371−383.
|
|
[47]
|
Luo Z D, Ou Q L, Xie Z H. A reduced finite difference scheme and error estimates based on POD method for the non-stationary Stokes equation[J]. Applied Mathematics and Mechanics, 2011, 32(7): 847−858.
|
|
[48]
|
Sun P, Luo Z D, Zhou Y J. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations[J]. Applied Numerical Mathematics, 2010, 60(1-2): 154−164.
|
|
[49]
|
Luo Z D, Du J, Xie Z H, et al. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the no-stationary Navier-Stokes equations[J]. International Journal for Numerical Methods in Engineering, 2011, 88(1): 31−46.
|
|
[50]
|
Luo Z D, Xie Z H, Shang Y Q, et al. A reduced finite volume element formulation and numerical simulations based on POD for parabolic equations[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2098−2111.
|
|
[51]
|
Luo Z D, Xie Z H, Chen J. A reduced MFE formulation based on POD for the non-stationary conduction-convection problems[J]. Acta Math Scientia, 2011, 31(5): 1765−1785.
|
|
[52]
|
Luo Z D, Ou Q L, Wu J R, et al. A reduced finite element formulation based on POD for two-dimensional hyperbolic equation[J]. Acta Math. Scientia, 2012, 32(5): 1997−2009.
|
|
[53]
|
Li H R, Luo Z D, Chen J. Numerical simulation based on proper orthogonal decomposition for two-dimensional solute transport problems[J]. Applied Mathematical Modelling, 2011, 35(5): 2489−2498.
|
|
[54]
|
Luo Z D, Zhou Y J, Yang X Z. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation[J]. Applied Numerical Mathematics, 2009, 59(8): 1933−1946.
|
|
[55]
|
Luo Z D, Chen J, Sun P, et al. Finite element formulation based on proper orthogonal decomposition for parabolic equations[J]. Science in China Series A: Mathematics, 2009, 52(3): 587−596.
|
|
[56]
|
Luo Z D, Chen J, Navon I M, et al. Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J]. SIAM J Numer Anal, 2008, 47(1): 1−19.
|
|
[57]
|
Luo Z D, Chen J, Navon I M, et al. An optimizing reduced PLSMFE formulation for non-stationary conduction- convection problems[J]. International Journal for Numerical Methods in Fluid, 2009, 60(4): 409−436.
|
|
[58]
|
Luo Z D, Yang X Z, Zhou Y J. A reduced finite difference scheme based on singular value decomposition and proper orthogonal decomposition for Burgers equation[J]. Journal of Computational and Applied Mathematics, 2009, 229(1): 97−107.
|
|
[59]
|
Luo Z D, Wang R W, Zhu J. Finite difference scheme based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J]. Science in China Series A: Math., 2007, 50(8): 1186−1196.
|
|
[60]
|
Luo Z D, Chen J, Zhu J, et al. An optimizing reduced order FDS for the tropical Pacific Ocean reduced gravity model[J]. International Journal for Numerical Methods in Fluids, 2007, 55(2): 143−161.
|
|
[61]
|
Luo Z D, Zhu J, Wang R W, et al. Proper orthogonal decomposition approach and error estimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41-44): 4184−4195.
|
|
[62]
|
Luo Z D, Li H, Shang Y Q, et al. A LSMFE formulation based on proper orthogonal decomposition for parabolic equations[J]. Finite Elements in Analysis and Design, 2012, 60: 1−12.
|
|
[63]
|
腾飞, 孙萍, 罗振东. 抛物型方程基于POD方法的时间二阶中心差的二阶精度简化有限元格式[J]. 计算数学, 2011, 33(4): 373−386.
|
|
[64]
|
Teng F, Sun P, Luo Z D. A reduced second order time accurate finite element formulation of time second order central difference based on POD approach for parabolic equations[J]. Mathematica Numerica Sinica, 2011, 33(4): 373−386.
|
|
[65]
|
Adams R A. Sobolev Spaces[M]. New York: Academic Press, 1975.
|
|
[66]
|
Girault V, Raviant P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[M]. Berlin: Spinger-Verlag, 1986.
|
|
[67]
|
Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods[M]. New York: Springer-Verlag, 1991.
|
|
[68]
|
Rudin W. Functional and Analysis (2nd Ed)[M]. McGraw-Hill Companies, Inc. 1973.
|