推导三维本原同余数一般公式及其判定定理
Identification and Judgment of Original Congruent Number
                  
              
    
                  
                    
                    摘要: 
	通过运用初等数论方法,把同余数问题从二维空间推广到三维空间。推导出三维本原同余数一般公式及其判定定理。阐明了各类三维同余数之间的关系,全面解决了三维同余数相关问题。
                 
              
                
                    Abstract: Congruent number problem was extended from two-dimensional space to three-dimensional space by the application of fundmental method, Deduce the general formulas and judgment theorems of three-di- mensional original congruent number. Clarifies the relationship between various types of three-dimensional congruent number, and comprehensively solute the problems associated with the three-dimensional congruent number.
                
                   
                  
    
  
 
     
    
    
                
         
                
                
                 
                
                    
                        参考文献
                        
                            
                                    
                                        | [1] | 胡作玄. 从毕达哥拉斯到费尔马[M]. 郑州: 河南科学技术出版社, 1998: 104-140. | 
                     
                                
                                    
                                        | [2] | 关永刚, 关春河. 推导本原同余数公式[J]. 长春师范学院学报, 2005, 24(4): 9-11. | 
                     
                                
                                    
                                        | [3] | 关永刚, 关春河. 本原同余数的判定[J]. 赤峰学院学报, 2006, 4: 1-4. | 
                     
                                
                                    
                                        | [4] | 冯祥树. 本原勾股数与本原同余数表的构造[J]. 太行学刊, 1994, 2. | 
                     
                                
                                    
                                        | [5] | 关永刚, 关春河. 本原同余数的推广[C]. 第八届全国初等数学研讨会论文集, 2012: 8. | 
                     
                                
                                    
                                        | [6] | 关春河. 空间勾股定理及空间勾股数[J]. 齐齐哈尔大学高师理科学刊, 2007, 27(4): 35-38. | 
                     
                                
                                    
                                        | [7] | 潘承洞, 潘承彪. 初等数论[M]. 北京: 北京大学出版社, 1992. |