| [1] | T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, et al. Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors. Applied Physics Letters, 2004, 85(18): 4205-4207. | 
                     
                                
                                    
                                        | [2] | J. Zaumseil, R. H. Friend and H. Sirringhaus. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nature Materials, 2006, 5(1): 69-74. | 
                     
                                
                                    
                                        | [3] | B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, et al. Large- scale complementary integrated circuits based on organic tran- sistors. Nature, 2000, 403(6769): 521-523. | 
                     
                                
                                    
                                        | [4] | T. Someya, T. Sekitani, S. Iba, Y. Kato, et al. A large-area, flexi- ble pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proceedings of the National Acad- emy of Sciences USA, 2004, 101(27): 9966-9970. | 
                     
                                
                                    
                                        | [5] | K. Takimiya, Y. Kunugi, Y. Kouda, et al. 2,7-diphenyl[1] benzo- selenopheno[3,2-b] [1]benzoselenophene as a stable organic se- miconductor for a high-performance field-effect transistor. Journal of the American Chemical Society, 2006, 128(9): 3044-3050. | 
                     
                                
                                    
                                        | [6] | K. Yamada, J. Takeya, K. Shigeto, K. Tsukagoshi, Y. Aoyagi and Y. Iwasa. Charge transport of copper phthalocyanine single- crystal field-effect transistors stable above 100˚C. Applied Phy- sics Letters, 2006, 88(12): Article ID: 122110. | 
                     
                                
                                    
                                        | [7] | Z. Bao, A. J. Lovinger and A. Dodabalapur. Organic field— Effect transistors with high mobility based on copper phthalo- cyanine. Applied Physics Letters, 1996, 69(20): 3066-3068. | 
                     
                                
                                    
                                        | [8] | T. W. Kelly, D. V. Muyres, P. F. Baude, T. P. Smith and T. D. Jones. High performance organic thin film transistors. Materials Research Society Symposium Proceedings, 2003: 169-179. | 
                     
                                
                                    
                                        | [9] | F. Hong, X. Guo and J. Wang. Preparation of highly oriented copper phthalocyanine film by molecular templating effects for organic field-effect transistor. Organic Electronics, 2009, 10(6): 1097-1101. | 
                     
                                
                                    
                                        | [10] | R. Zeis, T. Siegrist and C. Kloc. Single-crystal field-effect tran- sistors based on copper phthalocyanine. Applied Physics Letters, 2005, 86(2): Article ID: 022103. | 
                     
                                
                                    
                                        | [11] | H. B. Wang, F. Zhu, J. L. Yang, Y. H. Geng and D. H. Yan. Weak epitaxy growth affording high-mobility thin films of disk-like organic semiconductors. Advanced Materials, 2008, 19(16): 2168- 2171. | 
                     
                                
                                    
                                        | [12] | H. B. Wang, X. J. Wang, H. C. Huang and D. H. Yan. Isotype heterojunction between organic crystalline semiconductors. Applied Physics Letters, 2008, 93(10): Article ID: 103307. | 
                     
                                
                                    
                                        | [13] | H. B. Wang, X. J. Wang, B. Yu, Y. H. Geng and D. H. Yan. p-p isotype organic heterojunction and ambipolar field-effect tran- sistors. Applied Physics Letters, 2008, 93(11): Article ID: 113303. | 
                     
                                
                                    
                                        | [14] | C. H. Li, F. Pan and D. H. Yan. Very low hysteresis organic thin-film transistors. Semiconductor Science and Technology, 2009, 24(8): Article ID: 085009. | 
                     
                                
                                    
                                        | [15] | X. Liu, Y. Bai, Z.-L. Zhang, et al. Organic thin film transistors with double insulator layers. Journal of Optoelectronics Laser, 2008, 5: 577-580. | 
                     
                                
                                    
                                        | [16] | F. Garnier, G. Horowitz, X. Z. Peng and D. Fichou. Structural basis for high carrier mobility in conjugated oligomers. Syn- thetic Metals, 1991, 2: 163-171. | 
                     
                                
                                    
                                        | [17] | G. Horowitz. Organic field-effect transistors. Advanced Materi- als, 1998, 10(5): 365-377. | 
                     
                                
                                    
                                        | [18] | G. Horowitz, R. Hajlaoui, D. Fichou and A. E. Kassmi. Gate volt- age dependent mobility of oligothiophene field-effect transistors. Journal of Applied Physics, 1999, 85(6): 3202-3206. |