卷积算子的非游荡序列
Nonwandering Sequence of Convolution Operators
摘要:
非游荡算子是一类新型的混沌算子,在动力系统与控制等领域有广泛的应用。本文建立了卷积算子的非游荡序列,并得到该序列收敛、周期点稠密等相关分析性质。
Abstract: A nonwandering operator is a new kind of linear chaotic operators, which has a wide applications in dynamical system. In this paper, we establish nonwandering sequences of convolution operators and study some proper- ties of these sequences, such as the convergence and the denseness of periodic point.
参考文献
|
[1]
|
G. Godefroy, J. H. Shapiro. Operators with dense, invariant cy- clic vector manifolds. Journal of Functional Analysis, 1991, 98 (2): 229-269.
|
|
[2]
|
R. L. Devaney. An introduction to chaotic dynamical systems. 2nd Edition, Reading: Addison-Wesley, 1989.
|
|
[3]
|
L. X. Tian, J. B. Zhou, X. Liu and G. S. Zhong. Nonwandering operators in Banach space. International Journal of Mathematics and Mathematical Sciences, 2005, 24: 3895-3908.
|
|
[4]
|
L. X. Tian, D. C. Lu. The property of nonwandering operator. Mathematics and Mechanics, 1996, 17(2): 155-161.
|
|
[5]
|
S. G. Shi, G. S. Zhong. Nonwandering operator sequences in Ba- nach space. International Journal of Nonlinear Science, 2006, 1(3): 164-171.
|
|
[6]
|
P. Henrik. Hypercyclic sequences of PDE perserving operators. Journal of Approximation Theory, 2006, 138(2): 168-183.
|
|
[7]
|
B. G. Luis. Hypercyclic sequences of differential and antidiffer- ential operators. Journal of Approximation Theory, 1997, 96(2): 323-337.
|
|
[8]
|
J. B. Zhou, D. C. Lu and L. X. Tian. The hereditayily hypercy- clic decomposition of nonwandering operators in Frechet space. Journal of Jiangsu University (Natural Science Edition), 2001, 22(6): 88-91.
|