伪黎曼乘积空间 Npm(c)× ℝ中的λ-双调和超曲面
λ-Biharmonic Hypersurfaces in Pseudo-Riemannian Product Space Npm(c)× ℝ
DOI: 10.12677/PM.2024.1410354, PDF,    国家自然科学基金支持
作者: 孟莹莹*, 杨 超#:西北师范大学数学与统计学院,甘肃 兰州
关键词: λ-双调和超曲面乘积空间角度函数类空超曲面直柱体λ-Biharmonic Hypersurfaces Product Spaces Angle Function Space-Like Hypersurfaces Vertical Cylinder
摘要: 本文主要研究伪黎曼乘积空间Npm(c)× ℝ中的λ-双调和超曲面,给出超曲面是λ-双调和的等价方程,证得Npm(c)× ℝ中具有常平均曲率且形状算子可对角化的λ-双调和(εm+1λ≥0)超曲面要么是极小的,要么是一个直柱体。利用该结论,在角度函数为常数的假设下,对Npm(c)× ℝ中的Einstein 型 λ-双调和超曲面进行分类。特别地,我们讨论了(ℍm(c) × ℝ,gN- dt2)中至多具有两个不同主曲率的λ-双调和类空超曲面(Mm,g),在角度函数是常数且双曲角a≠0的假设下证得超曲面Mm要么是极小的,要么是一个直柱体。
Abstract: In this paper, we study the λ-biharmonic hypersurfaces in the pseudo-Riemannian product space Npm(c)× ℝ, and derive λ-biharmonic equation. It is shown that the λ-biharmonic hypersurfaces (εm+1λ≥0) with constant mean curvature and shape op- erator can be diagonalizable are either minimal or a vertical cylinder. Utilizing this result, the paper classifies Einstein-type λ-biharmonic hypersurfaces in Npm(c)× ℝ under the assumption of a constant angle function. In particular, it classifies at most two distinct principal curvatures of λ-biharmonic space-like hypersurfaces (Mm,g) in (ℍm(c) × ℝ,gN- dt2) , and proves that under the assumption of a constant angle and hyperbolic angle a≠0, the hypersurface Mm is either minimal or a vertical cylinder.
文章引用:孟莹莹, 杨超. 伪黎曼乘积空间 Npm(c)× ℝ中的λ-双调和超曲面[J]. 理论数学, 2024, 14(10): 147-157. https://doi.org/10.12677/PM.2024.1410354

参考文献

[1] Luo, Y. and Maeta, S. (2017) Biharmonic Hypersurfaces in a Sphere. Proceedings of the Amer- ican Mathematical Society, 145, 3109-3116.
https://doi.org/10.1090/proc/13320
[2] Maeta, S. and Ou, Y. (2020) Some Classifications of Biharmonic Hypersurfaces with Constant Scalar Curvature. Pacific Journal of Mathematics, 306, 281-290.
https://doi.org/10.2140/pjm.2020.306.281
[3] Ou, Y. (2010) Biharmonic Hypersurfaces in Riemannian Manifolds. Pacific Journal of Math- ematics, 248, 217-232.
https://doi.org/10.2140/pjm.2010.248.217
[4] Chen, B. (1988) Null 2-Type Surfaces in R3 Are Circular Cylinders. Kodai Mathematical Journal, 11, 295-299.
https://doi.org/10.2996/kmj/1138038880
[5] Chen, B. (2011) Pseudo-Riemannian Geometry, δ-Invariants and Applications.World Scientific Publishing.
https://doi.org/10.1142/9789814329644
[6] Ferrandez, A. and Lucas, P. (1991) Null Finite Type Hypersurfaces in Space Forms. Kodai Mathematical Journal, 14, 406-419.
https://doi.org/10.2996/kmj/1138039464
[7] Chen, B. and Garay, O.J. (2012) δ(2)-Ideal Null 2-Type Hypersurfaces of Euclidean Space Are Spherical Cylinders. Kodai Mathematical Journal, 35, 382-391.
https://doi.org/10.2996/kmj/1341401058
[8] Liu, J.-C. and Yang, C. (2017) Hypersurfaces in ℝsn+1 Satisfying ΔH = λH with at Most Two Distinct Principal Curvatures. Journal of Mathematical Analysis and Applications, 451, 14-33.
[9] Yang, C., Liu, J.-C. and Du, L. (2024) PMCV Hypersurfaces in Non-Flat Pseudo-Riemannian Space Forms. arXiv: 2403.08205v1
[10] Fu, Y., Maeta, S. and Ou, Y. (2021) Biharmonic Hypersurfaces in a Product Space Lm ×ℝ. Mathematische Nachrichten, 294, 1724-1741.
https://doi.org/10.1002/mana.201900457
[11] 郭强,戴忠柱,商晓辉,乘积空间Sn(c)×ℝ中的双调和爱因斯坦超曲面[J]. 高师理科学刊, 2021, 41(8):8-10.
[12] 赵珍, 杨超. 𝕊m×ℝ与ℍm×ℝ中的λ-双调和超曲面[J]. 理论数学, 2023, 13(12): 3481-3489. https://doi.org/10.12677/PM.2023.1312362
[13] Albujer, A.L., Aledo, J.A. and Al[as, L.J. (2010) On the Scalar Curvature of Hypersurfaces in Spaces with a Killing Field. Advances in Geometry, 10, 487-503.
https://doi.org/10.1515/advgeom.2010.017