2 × 2 上三角型算子矩阵的闭值域性问题研究
Research on Closedness Range of 2 × 2Upper Triangular Operator Matrices
摘要: 设
H1 和
H2 是无穷维可分的 Hilbert 空间, 记
M = (
0 BA C )为
H1⊕
H2上的上三角型算子矩阵. 本文基于空间分解法, 利用矩阵元 A, B, C 的值域和零空间性质研究了算子矩阵 M 的值域
闭性, 并给出了
ρcr(
M) =
ρcr(
A)∩
ρcr(
B)成立的条件, 其中
ρcr(
M) = {
λ∈ℂ :
R(
M - λI) =
R(M - λI)}
Abstract: Let H1 and H2 be infinite dimensional separable Hilbert spaces and M = ( 0 BA C )
be a 2 × 2 upper triangular operator matrix acting on H1⊕H2. In this paper, the
closedness of the range R(M ) is described by using the range and the null spaces of A, B, C and the spatial decomposition method. In addition, the conditions under which
ρcr(M) = ρcr(A)∩ρcr(B) holds are given, where ρcr(M) = {λ∈ℂ : R(M - λI) = R(M - λI)}.
参考文献
|
[1]
|
吴德玉, 阿拉坦仓. 分块算子矩阵谱理论及其应用[M]. 北京: 科学出版社, 2013.
|
|
[2]
|
徐仲, 张凯院, 陆全, 冷国伟. 矩阵论简明教程[M]. 北京: 科学出版社, 2005.
|
|
[3]
|
青梅. 无界算子矩阵的谱和补问题[D]: [博士学位论文]. 呼和浩特: 内蒙古大学, 2016.
|
|
[4]
|
李小鹏. 3 × 3 无界上三角矩阵的闭值域谱[D]: [硕士学位论文]. 呼和浩特: 内蒙古大学, 2017.
|
|
[5]
|
李愿. 算子矩阵的左谱[J]. 兰州大学学报: 自然科学版, 2007, 43(6): 117-121.
|
|
[6]
|
秦文青, 侯国林. 3 × 3 上三角算子矩阵值域的闭性研究[J]. 数学的实践与认识, 2013, 43(19): 258-264.
|
|
[7]
|
Wu, X. and Huang, J. (2020) Essential Spectrum of Upper Triangular Operator Matrices. Annals of Functional Analysis, 11, 780-798. [Google Scholar] [CrossRef]
|
|
[8]
|
海国君, 阿拉坦仓. 2 × 2 阶上三角型算子矩阵的Moore-Penrose谱[J]. 系统科学与数学, 2009, 29(7): 962-970.
|
|
[9]
|
Apostol, C. (1985) The Reduced Minimum Modulus. Michigan Mathematical Journal, 32, 279-294. [Google Scholar] [CrossRef]
|
|
[10]
|
Penrose, R. (1955) A Generalized Inverse for Matrices. Mathematical Proceedings of the Cam- bridge Philosophical Society, 51, 406-413. [Google Scholar] [CrossRef]
|
|
[11]
|
Huang, J., Huang, Y. and Wang, H. (2015) Closed Range and Fredholm Properties of Upper- Triangular Operator Matrices. Annals of Functional Analysis, 6, 42-52. [Google Scholar] [CrossRef]
|