《Journal of Chemical Information & Modeling》

Markov logic networks for optical chemical structure recognition

作者:
P FrasconiF GabbrielliM LippiS Marinai

关键词:
Machine learningtreesonline computationreal-time and embedded systems

摘要:
Optical chemical structure recognition is the problem of converting a bitmap image containing a chemical structure formula into a standard structured representation of the molecule. We introduce a novel approach to this problem based on the pipelined integration of pattern recognition techniques with probabilistic knowledge representation and reasoning. Basic entities and relations (such as textual elements, points, lines, etc.) are first extracted by a low-level processing module. A probabilistic reasoning engine based on Markov logic, embodying chemical and graphical knowledge, is subsequently used to refine these pieces of information. An annotated connection table of atoms and bonds is finally assembled and converted into a standard chemical exchange format. We report a successful evaluation on two large image data sets, showing that the method compares favorably with the current state-of-the-art, especially on degraded low-resolution images. The system is available as a web server at http://mlocsr.dinfo.unifi.it.

在线下载

相关文章:
在线客服:
对外合作:
联系方式:400-6379-560
投诉建议:feedback@hanspub.org
客服号

人工客服,优惠资讯,稿件咨询
公众号

科技前沿与学术知识分享