文章引用说明 更多>> (返回到该文章)

Mahjoob, M.J., Mohammadi, N. and Malakooti, S. (2009) An Investigation into the Acoustic Insulation of Triple- Layered Panels Containing Newtonian Fluids: Theory and Experiment. Applied Acoustics, 70, 165-171.
http://dx.doi.org/10.1016/j.apacoust.2007.12.002

被以下文章引用:

  • 标题: 磁流变液夹层板隔声性能研究Sound Insulation Performance of the Sandwich Panel Cored with Magneto-Rheological Fluid

    作者: 戚利利, 徐晓美, 石静, 刘凯, 陆安琪

    关键字: 夹层板, 隔声性能, 传声损失, 磁流变液Sandwich Panels, Sound Insulation Performance, Sound Transmission Loss, Magneto-Rheological Fluid

    期刊名称: 《Open Journal of Transportation Technologies》, Vol.5 No.5, 2016-09-12

    摘要: 本文基于波阻抗分析法建立了夹层板的传声损失数学模型,根据松弛时间谱间接估算了磁流变液的粘弹性模量,基于此理论模型,采用MATLAB编写相应的传声损失数值模拟程序,仿真研究了磁流变液夹层板的传声损失。研究结果表明,励磁电流对磁流变液夹层板的传声损失具有明显的影响,通过调节励磁电流,可以实现夹层板隔声能力的半主动控制;夹层板的芯层厚度并非越大越好,大的芯层厚度易于使吻合频率落入夹层板的常用工作频率范围,从而恶化夹层板的低频隔声性能;夹层板的面板材料选取要综合考虑夹层板的高、低频隔声能力,且要注意成本和轻量化的要求。 Mathematical model of the sound transmission loss (STL) of sandwich panels is firstly established based on the method of wave impedance analysis. And then, the viscoelastic moduli of magneto-rheological fluid are estimated indirectly according to the relaxation time spectrum. Finally, the simulation program of the STL of sandwich panels is coded by MATLAB and then the STL of sandwich panels is analyzed. Research results show that there are obvious effects of the field current on the STL, and semi-active control of the sound insulation performance of the sandwich panel can be realized by adjusting the field current; the core layer thickness of the sandwich panel is not the bigger the better because bigger thickness is easy to make the coincidence frequency fall into the common operating frequency range of sandwich panels and thus worsens the sound insulation performance of sandwich panel in low frequency range; selection of face sheet material should comprehensively consider the sound insulation performance of panels in both low and high frequency ranges, and the panel cost and lightweight requirements should also be considered.

在线客服:
对外合作:
联系方式:400-6379-560
投诉建议:feedback@hanspub.org
客服号

人工客服,优惠资讯,稿件咨询
公众号

科技前沿与学术知识分享