# Erceg伪度量连续性公理及其基本球的关系的研究The Researches of the Continuous Axiom of Erceg’s Pseudo-Metric and the Relationships between Its Basic Spheres

• 全文下载: PDF(387KB)    PP.209-216   DOI: 10.12677/AAM.2015.42026
• 下载量: 1,008  浏览量: 3,848

In this paper, by comparing the axioms of Erceg-Peng metric and classical metric, we have proved that there is no intrinsic relationship between the topology induced by Erceg metric and the con-tinuous condition in its axioms, and further given some relationships of several types of basic spheres in Erceg-Peng’s pseudo-metric.

 [1] Erceg, M.A. (1979) Metric spaces in fuzzy set theory. Journal of Mathematical Analysis and Applications, 69, 205- 230. [2] 陈鹏, 史福贵 (2007) Erceg-度量的进一步简化及其性质. 数学进展, 5, 579-586. [3] Chen, P. (2011) The relation between two kinds of metrics on lattices. Annals of Fuzzy Sets, Fuzzy Logic and Fuzzy Systems, 1, 175-181. [4] 梁基华 (1984) 关于不分明度量空间的几个问题. 数学年刊, 1, 59-67. [5] Peng, Y.W. (1993) Simplification of Erceg’s fuzzy metric function and its application. Fuzzy Sets and Systems, 54, 181-189. [6] 彭育威 (1996) 对格上Erceg式p.q.(p.)度量的注记. 数学研究与评论, 1, 135-138. [7] Shi, F.G. (2001) Pointwise pseu-do-metrics in L-fuzzy set theory. Fuzzy Sets and Systems, 121, 200-216. [8] Hausdorff, F. (1957) Set Theory. 2nd Edition, Chelsea, New York. [9] Kelley, J.L. (1955) General topology. Stone, M.A., Nirenberg, L. and Chern, S.S., Eds., Van Nostrand, New York. [10] 王国俊 (1982) 邻域方法在Fuzzy拓扑学中的困难. 模糊数学, 1, 113-116.