AAM  >> Vol. 4 No. 4 (November 2015)

    G-Design with Three Groups

  • 全文下载: PDF(324KB) HTML   XML   PP.365-368   DOI: 10.12677/AAM.2015.44045  
  • 下载量: 1,291  浏览量: 4,013   国家自然科学基金支持


朱莉,王建:南通职业大学,江苏 南通

t-设计四元系烛台型设计G-设计t-Designs Quadruple Systems Candelabra Systems G-Design



As a special example of the candelabra systems (CQS), G-design is the extension of group divisible designs (GD), which plays an important role in quadruple systems’ construction. With application of Stern and Lenz’s result on one-factorization of graphs, by direct construction, it is given that the sufficient and necessary condition for the existence of the G-design with three groups is that.

朱莉, 王建. 三个组的G-设计[J]. 应用数学进展, 2015, 4(4): 365-368. http://dx.doi.org/10.12677/AAM.2015.44045


[1] 沈灏. 组合设计理论[M]. 上海: 上海交通大学出版社, 2008.
[2] Mohacsy, H. and Ray-Chaudhuri, D.K. (2002) Candelabra Systems and Designs. Journal of Statistical Planning and Inference, 106, 419-448.
[3] Mills, W.H. (1981) A Covering of Triples by Quadruples. Congr. Numer, 33, 253-260.
[4] Mills, W.H. (1990) On the Existence of H Designs. Congr. Numer, 79, 129-141.
[5] Hartman, A. (1980) Tripling Quadruple Systems. Ars Combinatoria, 10, 255-309.
[6] Hartman, A. (1994) The Fundamental Construction for 3-Designs. Discrete Mathematics, 124, 107-132.
[7] Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applications. Macmillan Press, London.
[8] Stern, G. and Lenz, H. (1980) Sterner Triple Systems with Given Sub-spaces: Another Proof of the Doyen-Wilson Theorem. Bollettino Unione Matematica Italiana (Ser. A), 17, 109-114.