# 应用指数函数方法求解KdV型方程Application of Exp-Function Method to Solve KdV-Type Equation

• 全文下载: PDF(731KB)    PP.369-375   DOI: 10.12677/AAM.2015.44046
• 下载量: 1,387  浏览量: 4,273   科研立项经费支持

Exp-function method is an effective way to construct exact solutions of partial differential equations in mathematics and physics. This paper applies Exp-function method to obtain the new exact solutions of KdV-type equation, and depicts the figures of the solutions respectively in order to better understand the properties of the solutions.

  Ablowitz, M.J. and Clarkson, P.A. (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, New York. http://dx.doi.org/10.1017/CBO9780511623998  闫振亚. 复杂非线性波的构造性理论及其应用[M]. 北京: 科学出版社, 2007.  范恩贵, 张鸿庆. 非线性孤子方程的齐次平衡法[J]. 物理学报, 1998(47): 333-361.  李志斌, 张善卿. 非线性波动方程准确孤立波解的符号计算[J]. 数学物理学报, 1997(17): 81-89.  楼森岳, 唐晓艳. 非线性数学物理方程[M]. 北京: 科学出版社, 2006.  He, J.-H. and Wu, X.-H. (2006) Exp-Function Method for Nonlinear Wave Equations. Chaos, Solitons and Fractals, 30, 700-708. http://dx.doi.org/10.1016/j.chaos.2006.03.020  Bluman, G.W. and Anco, S.C. (2002) Symmetry and Integration Methods for Differential Equations. Springer, New York.  Dey, B. (1985) Domain Wall Solution of KdV like Eq-uation with Higher Order Nonlinearity. Journal of Physics A: Mathematical and General, 19, L9-L12. http://dx.doi.org/10.1088/0305-4470/19/1/003  Zhang, W.G., Chang, Q.S. and Jiang, B.G. (2002) Explicit Exact Solitary-Wave Solutions for the Compound KdV- Type and Compound KdV-Burgers-Type Equations with Nonlinear Terms of Any Order. Chaos, Solitons and Fractals, 13, 311-319. http://dx.doi.org/10.1016/S0960-0779(00)00272-1