AAM  >> Vol. 5 No. 1 (February 2016)

    径向基函数插值配置点的自适应选取算法
    An Adaptive Method for Choosing Collocation Points of RBF Interpolation

  • 全文下载: PDF(437KB) HTML   XML   PP.8-14   DOI: 10.12677/AAM.2016.51002  
  • 下载量: 598  浏览量: 2,020   国家自然科学基金支持

作者:  

刘雨,姜自武:临沂大学理学院,山东 临沂;
刘广磊:临沂大学信息学院,山东 临沂;
龚佃选:河北联合大学理学院,河北 唐山

关键词:
自适应算法配置点径向基函数贪婪算法Adaptive Method Collocation Points Radial Basis Function Greedy Algorithm

摘要:
径向基函数是一种处理高维散乱数据插值的有效方法。由于逼近精度和稳定性都严重依赖于配置点的分布,因此在重建过程中如何设计配置点的优化选取算法成为一个迫切需要解决的问题。在本文中,我们将简要介绍已有的选取算法,例如:细化算法、贪婪算法等。文章的最后,我们给出一种新的自适应选取算法,并通过数值算例验证该方法的高效性。

Radial basis function (RBF) is one of effective meshfree methods for interpolation on high dimen-sional scattered data. Since the approximation quality and stability seriously depend on the dis-tribution of the collocation points, it is urgent to find algorithm of choosing optimal point sets for the reconstruction process. In this paper, we give a short overview of existing algorithms including thinning algorithm, greedy algorithm, and so on. A new adaptive data-dependent method is pro-vided at the end with a numerical example to show its efficiency.

文章引用:
刘雨, 刘广磊, 姜自武, 龚佃选. 径向基函数插值配置点的自适应选取算法[J]. 应用数学进展, 2016, 5(1): 8-14. http://dx.doi.org/10.12677/AAM.2016.51002

参考文献

[1] 吴宗敏. 散乱数据拟合的模型、方法和理论[M]. 北京: 科学出版社, 2007.
[2] Fasshauer, G.E. (2007) Meshfree Approximation Methods with Matlab. World Scientific, Singapore.
http://dx.doi.org/10.1142/6437
[3] Franke, R. (1982) Scattered Data Interpolation, Test of Some Methods. Ma-thematics of Computation, 38, 181-200.
[4] Dyn, N., Floater, M.S. and Iske, A. (2002) Adaptive Thinning for Biva-riate Scattered Data. Journal of Computational and Applied Mathematics, 145, 505-517.
http://dx.doi.org/10.1016/S0377-0427(02)00352-7
[5] Iske, A. (2003) Progressive Scattered Data Filtering. Journal of Computational and Applied Mathematics, 158, 297- 316.
http://dx.doi.org/10.1016/S0377-0427(03)00449-7
[6] Wendland, H. (2005) Scattered Data Approximation (Cambridge Monographs on Applied and Computational Mathematics; 17). Cambridge University Press, Cam-bridge.
[7] Schaback, R. (1995) Error Estimates and Condition Numbers for Radial Basis Function Interpolation. Advances in Computational Mathematics, 3, 251-264.
http://dx.doi.org/10.1007/BF02432002
[8] Floater, M.S. and Iske, A. (1998) Thinning Algorithms for Scattered Data Interpolation. BIT Numerical Mathematics, 38, 705-720.
http://dx.doi.org/10.1007/BF02510410
[9] Behrens, J. and Iske, A. (2002) Grid-Free Adaptive Semi-Lagrangian Advection Using Radial Basis Functions. Computers and Mathematics with Applications, 43, 319-327.
http://dx.doi.org/10.1016/S0898-1221(01)00289-9
[10] Marchi, S.D. (2003) On Optimal Center Locations for Radial Basisfunction Interpolation: Computational Aspects. Rendiconti del Seminario Matematico Università e Poli-tecnico di Torino (Splines Radial Basis Functions and Applications), 61, 343-358.
[11] Xu, B.Z., Zhang, B.L. and Wei, G. (1994) Neural Network Theory and Its Application. South China University of Technology Press, Guangzhou.