AAM  >> Vol. 5 No. 1 (February 2016)

    具有时滞的珊瑚礁模型的Hopf分支分析
    Hopf Bifurcation Analysis in the Coral Reef Delay Differential Equations (DDE) Model

  • 全文下载: PDF(411KB) HTML   XML   PP.31-40   DOI: 10.12677/AAM.2016.51005  
  • 下载量: 844  浏览量: 4,356  

作者:  

李秋菊,赵维锐:武汉理工大学,湖北 武汉

关键词:
珊瑚礁模型时滞Hopf分支正周期解Coral Reef Models Delay Hopf Bifurcations Periodic Solutions

摘要:

本文探讨具有时滞的珊瑚礁模型的内部平衡点产生的Hopf分支,李熊等人在文献[1]中得到了该模型内部平衡点的稳定性条件,并把时滞作为分支参数,得到了时滞界限,给出了Hopf分支存在的条件,但没有进一步讨论模型中内部平衡点的Hopf分支的分支方向及其周期解的稳定性。这篇文章中我们主要利用正规型方法和中心流形理论讨论内部平衡点的Hopf分支的分支方向以及周期解稳定性性质,并给出数值计算。

The dynamics of the coral reef DDE model is investigated. Li et al. [1] proved that a sequence of Hopf bifurcations occured at the positive equilibrium as the delay increased. In this paper, by applying the center manifold theorem and the normal form theory, we provide a detailed analysis of the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions at the positive equilibrium. Finally, focused parameters are obtained which determine property of the Hopf bifurcation and numerical calculation are given to justify the valid of the theoretical analysis.

文章引用:
李秋菊, 赵维锐. 具有时滞的珊瑚礁模型的Hopf分支分析[J]. 应用数学进展, 2016, 5(1): 31-40. http://dx.doi.org/10.12677/AAM.2016.51005

参考文献

[1] Li, X., Wang, H., Zhang, Z., et al. (2014) Mathematical Analysis of Coral Reef Corals. Journal of Mathematical Analysis and Applications, 416, 352-373.
http://dx.doi.org/10.1016/j.jmaa.2014.02.053
[2] Blackwood, J.C. and Hastings, A. (2011) The Effect of Time Delays on Caribbean Coral-Algal Interactions. Journal of Theoretical Biology, 273, 37-43.
http://dx.doi.org/10.1016/j.jtbi.2010.12.022
[3] Hughes, T.P., Baird, A.H. and Bellwood, D.R. (2003) Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science, 301, 929-933.
http://dx.doi.org/10.1126/science.1085046
[4] Blackwood, J.C., Hastings, A. and Mumby, P.J. (2012) The Effect of Fishing on Hysteresis in Caribbean Coral Reefs. Theoretical Ecology, 5, 105-114.
http://dx.doi.org/10.1007/s12080-010-0102-0
[5] Gardner, T.A., Cote, I.M. and Gill, J.A. (2003) Long-Term Region-Wide Declines in Caribbean Corals. Science, 301, 958-960.
http://dx.doi.org/10.1126/science.1086050
[6] Singh, A., Wang, H., Morrison, W. and Weiss, H. (2012) Model-ing Fish Biomass Structure at Near Pristine Coral Reefs and Degradation by Fishing. Journal of Biological Systems, 20, 21-36.
http://dx.doi.org/10.1142/S0218339011500318
[7] 范猛, 王克. 一类具有Holling II型功能性反应的捕食–食饵系统全局周期解的存在性[J]. 数学物理学报, 2001, 21(4): 492-497.
[8] 赵洪涌, 王广兰. 具有变时滞Hopfield神经网络的概周期解存在性与全局吸引性[J]. 数学物理学报, 2004, 24(6): 723-729.
[9] 陈万义. 一类Hopfield型时滞神经网络模型的全局渐近稳定性[J]. 生物数学学报, 2004, 19(2): 175-179.
[10] 邓谨, 王林山, 徐道义. 具有S型分布时滞的Hopfield神经网络模型的渐近行为[J]. 四川大学学报, 2004, 41(1): 319-402.
[11] 段文英. 关于具时滞捕食–被捕食系统的稳定性与Hop f分支[J]. 生物数学学报, 2004, 19(1): 87-92.