分子伴侣介导的自噬在消化系统疾病的研究进展
Research Progress on Chaperone Mediated Autophagy in Digestive System Diseases
DOI: 10.12677/acm.2025.151135, PDF, HTML, XML,    科研立项经费支持
作者: 李忠标*:青岛大学青岛医学院,山东 青岛;宋志超#:淄博市第一医院肛肠外科,山东 淄博
关键词: 分子伴侣介导的自噬消化系统疾病溶酶体相关膜蛋白2AChaperone Mediated Autophagy Digestive System Diseases LAMP2A
摘要: 自噬通过溶酶体分解和循环利用细胞成分,促进细胞质量控制和能量代谢。作为自噬的一种形式,分子伴侣介导的自噬(chaperone-mediated autophagy, CMA)选择性降解细胞内含有KFERQ五肽的受损或异常蛋白,在维持细胞稳态中具有核心作用。近期研究表明,CMA通过调控脂质代谢、细胞周期和氧化应激等途径,在消化系统疾病中发挥重要功能。作为CMA标志物的溶酶体相关膜蛋白2A (lysosomal-associated membrane protein 2A, LAMP2A)有望成为诊断、预后及治疗消化系统疾病的潜在靶点。本文总结了CMA在肝癌、胃肠肿瘤、脂肪性肝病及炎性肠病等方面的研究进展,为相关疾病的临床诊疗提供新的视角。
Abstract: Autophagy promotes cellular quality control and energy metabolism by degrading and recycling essential cellular components via lysosomes. As a form of autophagy, Chaperone mediated autophagy (CMA) selectively degrades damaged or dysfunctional proteins containing the KFERQ motif within the cell, playing a central role in maintaining cellular homeostasis. Recent studies indicate that CMA regulates critical processes such as cell cycle, oxidative stress, and lipid metabolism, significantly influencing digestive system diseases. Lysosomal-associated membrane protein 2A (LAMP2A), a CMA marker, holds promise as a potential target for diagnosis, prognosis, and therapy. This review highlights CMA research progress in liver cancer, gastrointestinal tumors, fatty liver disease, and inflammatory bowel diseases, offering new perspectives for clinical management.
文章引用:李忠标, 宋志超. 分子伴侣介导的自噬在消化系统疾病的研究进展[J]. 临床医学进展, 2025, 15(1): 1010-1018. https://doi.org/10.12677/acm.2025.151135

1. 引言

自噬是在含有多种水解酶的溶酶体中发生的细胞降解过程,负责清除细胞内外的衰老或受损成分,是蛋白质降解的主要细胞途径。作为自噬的一类,分子伴侣介导的自噬(chaperone-mediated autophagy, CMA)通过选择性降解特定蛋白质,参与细胞质量控制、抵御内外部损伤并维持能量平衡,对细胞生存具有重要意义[1]。CMA降解途径起始于热休克蛋白70 (heat shock protein of 70, HSC70)识别含KFERQ五肽序列的底物蛋白,并将其递送至溶酶体相关膜蛋白2A (lysosomal-associated membrane protein 2A, LAMP2A),后者通过聚合作用引导底物进入溶酶体并迅速降解[2]。近年来,CMA在消化系统疾病中的调控作用引发广泛关注。研究发现,CMA对消化道及肝脏肿瘤的生长至关重要,其基础活性在代谢性肝病和溃疡性结肠炎中持续特征性减弱,提示CMA可能在这些疾病的发生机制中发挥重要作用[3] [4]。阐明其在消化系统疾病中的相关分子机制具有重要意义,有望为临床消化疾病的治疗提供新的思路。

2. 分子伴侣介导的自噬的功能

Dice [5]首次发现糖尿病大鼠和饥饿大鼠的胞浆蛋白降解速率不同。随后,从这些快速降解蛋白中鉴定出KFERQ序列从而确定CMA的选择性。CMA选择性去除氧化损伤的底物在维持机体内稳态中发挥重要作用,其功能缺陷会增加细胞对氧化应激的敏感性,导致活性氧ROS积累增加,从而加剧细胞凋亡[6] [7]。但其在细胞能量代谢中的作用近年来才得以揭示[8],研究显示,CMA在饥饿状态下通过选择性降解糖脂代谢关键酶,抑制糖酵解和脂质合成促进脂解,减少代谢通路的活跃性,这一选择性降解功能构成了CMA的核心生理调控机制[9] [10]。此外,CMA通过降解缺氧和DNA损伤中的细胞周期相关蛋白来维持细胞周期,通过降解Chk1防止核内磷酸化Chk1的持续升高,维持DNA修复机制的正常运转[11]。在低氧条件下CMA通过调控缺氧诱导因子HIF-1α影响细胞周期,并通过直接降解转录因子及其调控因子调节转录程序[12]。进一步研究表明,CMA在多个生理和病理过程中发挥了保护作用,其失调不仅与代谢紊乱密切相关,还可能通过加剧DNA损伤和细胞周期失控,影响疾病发生与发展。这使得CMA成为潜在的治疗干预靶点。

3. CMA与消化道肿瘤

3.1. 肝癌

在肝细胞癌(hepatocellular carcinoma, HCC)中,CMA功能的异常对肿瘤发生和发展的影响越来越受到关注。研究表明,LAMP2A作为CMA通路的核心分子,其表达在肝细胞癌中显著下降,导致CMA活性受抑制,这为肝癌细胞提供了生存和增殖的有利条件,LAMP2A可能作为HCC的潜在诊断和预后评估标志物[13]。Enrico等人发现YAP1和IL6ST是CMA的新识别底物,他们参与调节细胞增殖、迁移以及免疫反应。由于CMA活性受损,导致YAP1和IL6ST的积累,这进一步激活了其下游信号通路,增强了肝癌细胞的增殖、迁移和侵袭能力[14]。此外,在肝硬化向HCC的进展过程中,CMA作为一种巨自噬受损的代偿活化机制,能够帮助维持细胞内稳态,抑制了对肿瘤细胞的内源性损伤的响应,起着推动肝癌细胞增殖的作用[15]。CMA的异常激活还与肝癌对放疗和化疗的耐受性密切相关。在放疗过程中,CMA通过降解高迁移率族蛋白B1 (high mobility group protein B1, HMGB1)从而下调抑癌基因p53来调节肝癌细胞对辐射的敏感性。HMGB1是一种与DNA损伤修复和炎症反应相关的蛋白,肝癌细胞通过CMA介导的HMGB1降解及下调p53蛋白水平,抑制了细胞周期检查点的作用,减弱了对放射损伤的免疫反应,进而有助于逃避辐射诱导的细胞凋亡[16]。在肝癌微环境中,M2型巨噬细胞通过分泌白介素17 (IL-17)来激活CMA,从而调节细胞周期蛋白D1和CDK4的表达,导致细胞周期停滞在G0/G1期,从而抑制奥沙利铂诱导的肿瘤细胞凋亡[17]。另外,缺氧环境也是肝癌微环境中的重要特征之一。热休克蛋白90α (heat shock protein 90α, Hsp90α)在缺氧条件下通过增强CMA,促进了对坏死复合体的降解,进一步加剧了肝癌细胞对索拉非尼的耐药性[18]。总之,CMA在肝细胞癌中的作用表现为双重调控机制,一方面通过抑制关键底物的降解促进肿瘤细胞的增殖和迁移,另一方面通过增强肝癌细胞对治疗的耐受性,使其在治疗过程中更具抗药性。

3.2. 胃癌

在胃癌(gastric cancer, GC)中,LAMP2A高表达与肿瘤细胞的增殖能力密切相关。研究发现,GC组织中LAMP2A的表达明显上调,尤其是在低分化胃癌中,LAMP2A蛋白水平高于正常组织的约两倍[19]。此外,在女性GC患者中,LAMP2A被证实为独立的预后标志物,LAMP2A阳性患者发展为胃癌的风险比阴性患者高出5.52倍,这一结果提示LAMP2A可能在GC的早期诊断中具有重要的应用价值[20]。Zhu [21]等发现CMA通过促进肿瘤抑制因子RND3的降解来维持细胞增殖状态,而CMA缺陷则会导致RND3的上调,从而抑制肿瘤细胞的增殖。这表明,CMA通过调节肿瘤抑制因子的降解参与肿瘤的生长与存活。CMA不仅在胃癌的增殖过程中发挥作用,还可能与癌细胞的转移性行为相关。胃癌细胞的转移往往伴随细胞的表型转变以及与肿瘤微环境的互动。Yoon [22]等人揭示了胃癌中自噬的异质性,巨自噬的缺陷可能会导致CMA的代偿性上调,从而影响肿瘤细胞的迁移与转移。在胃癌组织中,LAMP2A主要集中在上皮细胞的顶端,而在正常胃黏膜中,LAMP2A则主要集中在黏膜基底腺体处。这一变化与胃黏膜细胞向肠潘氏细胞的化生过程有关,可能为胃癌的转移和进展提供支持。综上,CMA不仅是胃癌治疗的新靶点,也为胃癌的早期诊断和预后评估提供了新的方向。然而,CMA在胃癌中的具体机制仍需进一步研究,未来可能为胃癌的精准治疗提供新的策略。

3.3. 结直肠癌

CMA在结直肠癌(colorectal cancer, CRC)中显示出过度激活的特点,其参与了肿瘤抑制因子的降解、代谢重编程以及对化疗药物的耐受性。首先,抑癌因子分选连接蛋白10 (sorting nexin 10, SNX10)在CMA调控中的作用不容忽视。SNX10缺乏会抑制LAMP2A的降解,导致CMA的过度激活,从而促进癌细胞内抑癌基因P21的降解。P21能够抑制细胞增殖和促进细胞周期停滞。CMA的过度激活通过抑制P21加速了CRC细胞的增殖[23]。此外,SNX10缺失所引起的CMA活化还通过上调mTORC1所需的氨基酸水平,进一步激活mTORC1通路,促进CRC细胞的代谢重编程,来支持癌细胞的快速增殖[24]。岩藻糖基转移酶8 (fucosyltransferase 8, FUT8)对CRC的影响也在CMA的调节下发挥重要作用。FUT8缺陷会导致免疫检查分子B7-H3的糖基化损伤,进而增加其在溶酶体中的降解。B7-H3广泛参与免疫逃逸和肿瘤的免疫逃避。FUT8抑制剂FDW028通过维持B7-H3的稳态,能够显著改善抗肿瘤免疫反应[25]。在CRC的化疗耐药性方面,5-FU耐药的CRC细胞系中CMA通过激活NF-κB通路,增加了耐药蛋白(如CD147、GST3、MLH1)和磷脂酶D2 (PLD2)的表达,从而使癌细胞抵抗5-FU诱导的细胞凋亡[26]。此外,CMA通过促进转录调控因子组蛋白乙酰转移酶p300/CBP的降解,进一步提升了5-FU的耐药性。氯喹作为CMA抑制剂,通过阻断p300/CBP的降解,显著增强了5-FU的细胞毒性[27]。CMA的过度激活还可增强癌细胞的自噬作用,并上调了糖酵解途径的相关酶。增强癌细胞的代谢能力,提高对顺铂和奥沙利铂的敏感性[28] [29]。综上所述,CMA不仅通过溶酶体降解抑癌因子和调节关键代谢通路来促进肿瘤细胞的增殖,还通过影响免疫检查点分子、维持细胞代谢稳态来帮助癌细胞逃避治疗。

3.4. 胰腺癌

胰腺癌是一种进展迅速且治疗选择有限的恶性肿瘤,其侵袭性和对治疗的耐药性常与胰岛素样生长因子1受体(insulin-like growth factor 1 receptor , IGF-1R)的异常表达密切相关。IGF-1R作为促癌基因,在胰腺癌细胞中高水平表达,并通过与伴侣蛋白Hsp90结合,逃避免疫监控和CMA途径的降解[30]。近年来,针对Hsp90的抑制剂NVP-AUY922(992)显示出激活CMA的潜力。通过促进CMA对IGF-1Rβ的特异性降解,992能够显著抑制胰腺癌细胞的增殖和存活。这一过程依赖于LAMP2A的表达水平,沉默LAMP2A可逆转992对IGF-1R的降解,进一步证实了CMA在此机制中的中心作用[31]。这为胰腺癌的治疗提供了一个全新的方向。尽管目前仍需深入研究以优化剂量和减少副作用,HSP90α抑制剂NVP-AUY922在胰腺癌治疗中的前景令人期待。

4. CMA与肝脏疾病

4.1. 代谢相关性脂肪性肝病

代谢相关性脂肪肝(metabolism-associated fatty liver disease, MAFLD)是一种与代谢紊乱密切相关的肝脏疾病,其主要特征是肝脏内脂质积累和代谢功能失调。研究表明,MAFLD患者的肝脏中LAMP2A的表达显著减少,同时CMA阳性调节因子水平下降,这表明CMA功能在该疾病中被严重破坏[32]。脂蛋白2 (Perilipin2, PLIN2)是CMA的代表性底物之一,参与脂质代谢的调节。肝脏CMA缺陷的小鼠会出现糖脂代谢异常,并伴随PLIN2表达的增加,导致肝脏内脂质沉积的加重,这一现象表明异常的CMA活性可能是MAFLD进展的重要因素[33]。另外,衰老被普遍认为会增加MAFLD的易感性,随着年龄的增长,肝脏脂质代谢功能逐渐减弱,特别是脂肪酸氧化的能力下降。过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors, PPARα)是脂肪酸氧化的关键调节因子,其失活与老年性脂肪肝的发生密切相关[34]。Choi等人发现NCoR1作为PPARα的负调控因子,能够被CMA介导地降解。在衰老过程中,CMA功能的失调导致NCoR1的积累,这一积累抑制了PPARα的活性,从而破坏了脂肪酸的氧化过程,表明CMA可能是衰老过程中肝脏脂质代谢调控的潜在治疗靶点[35]。此外,近年来的研究还发现,袖状胃切除术(sleeve gastrectomy, SG)可以有效逆转MAFLD的肝损伤,这一效果与CMA活性的增强密切相关。具体来说,SG通过促进CMA的活性,增强了PLIN2的降解,从而减少了肝脏的脂质沉积。这一发现不仅为MAFLD的治疗提供了新的思路,也进一步证实了CMA在脂质代谢中的关键作用[36]。总之,通过调控CMA的活性,可能为MAFLD提供新的治疗策略,特别是在逆转脂质沉积和恢复脂肪酸氧化功能方面。

4.2. 非代谢相关性脂肪性肝病

CMA在非代谢相关性脂肪性肝病中的发病机制中也发挥重要作用。研究表明,SNX10通过调控CMA的活性,显著影响酒精及药物诱导的肝脂肪变性。You [37]等报道SNX10基因敲除小鼠表现出显著减轻的乙醇诱导的肝损伤和脂肪变性,这一效应与LAMP2A的表达增加和CMA活性增强密切相关。SNX10敲除导致组织蛋白酶A (cathepsin A, CTSA)的表达受到抑制,从而延缓了LAMP2A的降解,促进了CMA的活性。相反,SNX10的过表达则加速了LAMP2A的降解,削弱了CMA的活性,这一变化加剧了酒精诱导的肝脏损伤及脂肪沉积。因此,SNX10的过表达会导致CMA功能的抑制,从而影响细胞内脂质代谢的正常进行,增加肝脏损伤的风险。此外,在双氯芬酸(diclofenac)诱导的肝脂肪变性模型中,SNX10通过增强CTSA的成熟加速LAMP2A的降解,从而损害CMA的正常功能。SNX10通过调节CTSA的成熟,不仅影响CMA通路的活性,还进一步引发脂质代谢紊乱和肝毒性[38]。这表明,SNX10调节CMA的能力可能是调控脂质稳态和保护肝脏免受药物诱导损伤的关键机制。综上所述,SNX10作为CMA活性的调节因子,其作用机制的深入研究可能为非代谢相关性脂肪性肝病的治疗提供新的方向。通过靶向SNX10恢复CMA功能,可能为酒精或药物诱导的肝损伤和脂肪变性提供一种新的治疗策略。

5. CMA与消化系统其他疾病

5.1. 炎性肠病

炎性肠病(inflammatory bowel disease, IBD)是一种由肠道屏障受损和免疫失衡驱动的慢性炎症性疾病。CMA在IBD中的作用涉及免疫调节和肠道屏障维持。克罗恩病患者中,Th1细胞过度活化会分泌大量IL-12、IL-17和IL-23,加剧肠粘膜屏障的损伤[39]。CMA通过调节CD4+ T细胞的活化,维持肠道免疫稳态并保护肠道屏障。值得注意的是抑制CMA能够增强间充质干细胞对T细胞的抑制作用,减少细胞因子对肠道的损害[40]。在右旋糖酐硫酸钠(Dextran Sulfate Sodium Salt, DSS)诱导的结肠炎模型中,尽管CMA的基因表达未发生显著变化,但其标志性蛋白LAMP2A的表达水平却有所增加。研究表明,P140通过调节LAMP2A能够显著改善结肠炎症状,提示CMA是溃疡性结肠炎的潜在治疗靶点[41]。此外,髓系细胞触发受体1 (triggering receptor expressed on myeloid cells-1, TREM-1)通过诱导促炎细胞因子的分泌加重IBD患者的炎症[42]。TREM-1抑制剂LR12肽不仅能改善实验性结肠炎,还通过恢复受损的CMA活性缓解内质网应激(endoplasmic reticulum stress, ERS),并重建肠道微生物群的稳态[43]。然而,CMA在IBD的作用和治疗仍有待进一步研究。CMA功能失调可导致IBD病理状态,恢复CMA稳态,靶向CMA调节免疫细胞、微生物群稳态和内质网应激有助于缓解肠道炎症。未来更深入地研究CMA功能有助于为IBD的治疗提供新的思路和策略。

5.2. 肠纤维化

肠纤维化是炎性肠病(IBD)常见的严重并发症,其核心机制之一是肠上皮间质转化(epithelial mesenchymal transition, EMT),这一过程在肠道损伤修复中过度激活,可加剧纤维化的形成[44]。与CMA在肠道炎症中的双重调节作用相比,CMA在纤维化过程中展现出显著的抗纤维化潜能。研究表明,CMA通过抑制NF-κB (p65/RelA)信号通路,显著减缓EMT的进程,进而抑制肠纤维化[45]。此外,NF-κB抑制剂如Rigosertib在DSS诱导的结肠炎模型中已被验证能够改善肠纤维化,这一发现进一步支持NF-κB和CMA作为治疗靶点的潜力[46]。尽管针对肠纤维化的治疗方法不断创新,现有治疗的疗效仍然有限,CMA在其中的作用有待进一步探讨。未来研究可以聚焦于CMA在纤维化不同阶段的动态调控作用,以及如何通过CMA特异性调控改善纤维化进程。

5.3. 慢性胰腺炎

慢性胰腺炎的持续炎症和组织损伤可导致胰腺星状细胞(pancreatic stellate cells, PSC)的激活,促使胶原蛋白等细胞外基质过度沉积,从而引发胰腺纤维化。纤维化是慢性胰腺炎的关键病理特征可进一步导致胰腺功能的不可逆损害,包括外分泌和内分泌功能障碍[47]。在活化的PSC中,TGF-β1通过诱导内质网应激促进CMA活化,导致MFG-E8的降解。研究表明,MFG-E8补充治疗能够通过抑制内质网应激诱导的CMA途径减轻胰腺纤维化。α-SMA的产生是PSC活化的标志,并伴随着大量胶原蛋白的产生。然而,CMA激活剂QX77不仅逆转了MFG-E8对LAMP2A表达的调节,还消除了MFG-E8对胶原蛋白和α-SMA表达的抑制作用[48]。CMA活化通过调节胰腺星状细胞的关键分子和纤维化相关蛋白质表达,在慢性胰腺炎的发生与纤维化进展中具有重要作用。

6. 总结与展望

CMA是一种选择性溶酶体降解机制,通过调控特定底物蛋白的降解,在消化系统疾病中发挥重要作用。CMA在消化道肿瘤中的作用机制存在显著差异。在肝癌中,CMA活性受到抑制促进了细胞增殖和迁移。此外,CMA功能异常有助于肝癌细胞逃避治疗。胃癌中,CMA则表现为LAMP2A的上调,促进细胞增殖和转移。CMA通过降解RND3等抑癌因子支持肿瘤生长,并参与胃癌的转移过程。相比之下,CRC中CMA过度激活,主要通过降解P21抑癌因子加速细胞增殖,同时通过mTORC1通路调节代谢重编程,增强化疗耐药性。近年来,随着研究的不断深入,开发靶向CMA的药物和评估CMA疗法的有效性与安全性是现代医学的重要方向。针对CMA激活剂,可通过促进LAMP2A的表达或稳定性、增强底物识别及溶酶体功能开发相关化合物,如AR7,其通过增加LAMP2A表达提升CMA活性。而CMA抑制剂,如PPD,则通过抑制LAMP2A寡聚化或干扰Hsc70与底物结合抑制CMA功能。药物筛选平台利用荧光标记底物和CMA活性报告模型评估候选药物的潜力。在疗法评估中,需检测LAMP2A表达、CMA底物降解率及溶酶体功能等生物学指标,并通过动物疾病模型验证CMA调节剂的疗效。同时,需要考察药物对溶酶体功能、细胞器健康及整体毒性的影响。随着研究的不断推进,CMA紊乱与疾病之间的具体关联有望被进一步揭示,为消化系统疾病的诊断与治疗提供全新思路。

基金项目

山东省潍坊医学院校级教育教学改革与研究课题(2022ZXSJ019)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sadeghloo, Z., Nabavi-Rad, A., Zali, M.R., Klionsky, D.J. and Yadegar, A. (2024) The Interplay between Probiotics and Host Autophagy: Mechanisms of Action and Emerging Insights. Autophagy.
https://doi.org/10.1080/15548627.2024.2403277
[2] Yao, R. and Shen, J. (2023) Chaperone‐Mediated Autophagy: Molecular Mechanisms, Biological Functions, and Diseases. MedComm, 4, e347.
https://doi.org/10.1002/mco2.347
[3] Mastoridou, E.M., Goussia, A.C., Kanavaros, P. and Charchanti, A.V. (2023) Involvement of Lipophagy and Chaperone-Mediated Autophagy in the Pathogenesis of Non-Alcoholic Fatty Liver Disease by Regulation of Lipid Droplets. International Journal of Molecular Sciences, 24, Article 15891.
https://doi.org/10.3390/ijms242115891
[4] Hubert, V., Weiss, S., Rees, A.J. and Kain, R. (2022) Modulating Chaperone-Mediated Autophagy and Its Clinical Applications in Cancer. Cells, 11, Article 2562.
https://doi.org/10.3390/cells11162562
[5] Dice, J.F., Walker, C.D., Byrne, B. and Cardiel, A. (1978) General Characteristics of Protein Degradation in Diabetes and Starvation. Proceedings of the National Academy of Sciences of the United States of America, 75, 2093-2097.
https://doi.org/10.1073/pnas.75.5.2093
[6] Le, S., Fu, X., Pang, M., Zhou, Y., Yin, G., Zhang, J., et al. (2022) The Antioxidative Role of Chaperone-Mediated Autophagy as a Downstream Regulator of Oxidative Stress in Human Diseases. Technology in Cancer Research & Treatment, 21, 1-15.
https://doi.org/10.1177/15330338221114178
[7] Zhu, L., He, S., Huang, L., Ren, D., Nie, T., Tao, K., et al. (2022) Chaperone‐Mediated Autophagy Degrades Keap1 and Promotes Nrf2‐Mediated Antioxidative Response. Aging Cell, 21, e13616.
https://doi.org/10.1111/acel.13616
[8] Huang, J. and Wang, J. (2024) Selective Protein Degradation through Chaperone-Mediated Autophagy: Implications for Cellular Homeostasis and Disease (Review). Molecular Medicine Reports, 31, Article No. 13.
https://doi.org/10.3892/mmr.2024.13378
[9] Filali-Mouncef, Y., Hunter, C., Roccio, F., Zagkou, S., Dupont, N., Primard, C., et al. (2021) The Ménage À Trois of Autophagy, Lipid Droplets and Liver Disease. Autophagy, 18, 50-72.
https://doi.org/10.1080/15548627.2021.1895658
[10] Yang, M., Luo, S., Chen, W., Zhao, L. and Wang, X. (2023) Chaperone-Mediated Autophagy: A Potential Target for Metabolic Diseases. Current Medicinal Chemistry, 30, 1887-1899.
https://doi.org/10.2174/0929867329666220811141955
[11] Park, C., Suh, Y. and Cuervo, A.M. (2015) Regulated Degradation of Chk1 by Chaperone-Mediated Autophagy in Response to DNA Damage. Nature Communications, 6, Article No. 6823.
https://doi.org/10.1038/ncomms7823
[12] Andrade-Tomaz, M., de Souza, I., Rocha, C.R.R. and Gomes, L.R. (2020) The Role of Chaperone-Mediated Autophagy in Cell Cycle Control and Its Implications in Cancer. Cells, 9, Article 2140.
https://doi.org/10.3390/cells9092140
[13] Ding, Z., Fu, X., Shi, Y., Zhou, J., Peng, Y., Liu, W., et al. (2016) Lamp2a Is Required for Tumor Growth and Promotes Tumor Recurrence of Hepatocellular Carcinoma. International Journal of Oncology, 49, 2367-2376.
https://doi.org/10.3892/ijo.2016.3754
[14] Desideri, E., Castelli, S., Dorard, C., Toifl, S., Grazi, G.L., Ciriolo, M.R., et al. (2022) Impaired Degradation of YAP1 and IL6ST by Chaperone-Mediated Autophagy Promotes Proliferation and Migration of Normal and Hepatocellular Carcinoma Cells. Autophagy, 19, 152-162.
https://doi.org/10.1080/15548627.2022.2063004
[15] Chava, S., Lee, C., Aydin, Y., Chandra, P.K., Dash, A., Chedid, M., et al. (2017) Chaperone-Mediated Autophagy Compensates for Impaired Macroautophagy in the Cirrhotic Liver to Promote Hepatocellular Carcinoma. Oncotarget, 8, 40019-40036.
https://doi.org/10.18632/oncotarget.16685
[16] Wu, J., Guo, J., Shi, J., Wang, H., Li, L., Guo, B., et al. (2017) CMA Down-Regulates P53 Expression through Degradation of HMGB1 Protein to Inhibit Irradiation-Triggered Apoptosis in Hepatocellular Carcinoma. World Journal of Gastroenterology, 23, 2308-2317.
https://doi.org/10.3748/wjg.v23.i13.2308
[17] Guo, B., Li, L., Guo, J., Liu, A., Wu, J., Wang, H., et al. (2017) M2 Tumor-Associated Macrophages Produce Interleukin-17 to Suppress Oxaliplatin-Induced Apoptosis in Hepatocellular Carcinoma. Oncotarget, 8, 44465-44476.
https://doi.org/10.18632/oncotarget.17973
[18] Liao, Y., Yang, Y., Pan, D., Ding, Y., Zhang, H., Ye, Y., et al. (2021) HSP90α Mediates Sorafenib Resistance in Human Hepatocellular Carcinoma by Necroptosis Inhibition under Hypoxia. Cancers, 13, Article 243.
https://doi.org/10.3390/cancers13020243
[19] Wei, S., Li, W., Liu, Y., Gao, D., Pan, J., Gu, C., et al. (2013) Disturbance of Autophagy-Lysosome Signaling Molecule Expression in Human Gastric Adenocarcinoma. Oncology Letters, 7, 635-640.
https://doi.org/10.3892/ol.2013.1773
[20] Zhou, J., Yang, J., Fan, X., Hu, S., Zhou, F., Dong, J., et al. (2016) Chaperone-Mediated Autophagy Regulates Proliferation by Targeting RND3 in Gastric Cancer. Autophagy, 12, 515-528.
https://doi.org/10.1080/15548627.2015.1136770
[21] Zhu, Y., Zhou, J., Xia, H., Chen, X., Qiu, M., Huang, J., et al. (2014) The Rho GTPase Rhoe Is a P53-Regulated Candidate Tumor Suppressor in Cancer Cells. International Journal of Oncology, 44, 896-904.
https://doi.org/10.3892/ijo.2014.2245
[22] Yoon, J., Brezden-Masley, C. and Streutker, C.J. (2021) Autophagic Heterogeneity in Gastric Adenocarcinoma. Frontiers in Oncology, 11, Article 555614.
https://doi.org/10.3389/fonc.2021.555614
[23] Zhang, S., Hu, B., You, Y., Yang, Z., Liu, L., Tang, H., et al. (2018) Sorting Nexin 10 Acts as a Tumor Suppressor in Tumorigenesis and Progression of Colorectal Cancer through Regulating Chaperone Mediated Autophagy Degradation of P21Cip1/WAF1. Cancer Letters, 419, 116-127.
https://doi.org/10.1016/j.canlet.2018.01.045
[24] Le, Y., Zhang, S., Ni, J., You, Y., Luo, K., Yu, Y., et al. (2018) Sorting Nexin 10 Controls mTOR Activation through Regulating Amino-Acid Metabolism in Colorectal Cancer. Cell Death & Disease, 9, Article No. 666.
https://doi.org/10.1038/s41419-018-0719-2
[25] Wang, M., Zhang, Z., Chen, M., Lv, Y., Tian, S., Meng, F., et al. (2023) FDW028, a Novel FUT8 Inhibitor, Impels Lysosomal Proteolysis of B7-H3 via Chaperone-Mediated Autophagy Pathway and Exhibits Potent Efficacy against Metastatic Colorectal Cancer. Cell Death & Disease, 14, Article No. 495.
https://doi.org/10.1038/s41419-023-06027-0
[26] Xuan, Y., Zhao, S., Xiao, X., Xiang, L. and Zheng, H. (2021) Inhibition of Chaperonemediated Autophagy Reduces Tumor Growth and Metastasis and Promotes Drug Sensitivity in Colorectal Cancer. Molecular Medicine Reports, 23, Article No. 360.
https://doi.org/10.3892/mmr.2021.11999
[27] Du, C., Huang, D., Peng, Y., Yao, Y., Zhao, Y., Yang, Y., et al. (2017) 5-Fluorouracil Targets Histone Acetyltransferases P300/CBP in the Treatment of Colorectal Cancer. Cancer Letters, 400, 183-193.
https://doi.org/10.1016/j.canlet.2017.04.033
[28] Shi, Z., Yang, S., Shen, C., Shao, J., Zhou, F., Liu, H., et al. (2024) LAMP2A Regulates Cisplatin Resistance in Colorectal Cancer through Mediating Autophagy. Journal of Cancer Research and Clinical Oncology, 150, Article No. 242.
https://doi.org/10.1007/s00432-024-05775-6
[29] Chen, R., Zhang, Y., Ge, Y., He, C., Wu, Z., Wang, J., et al. (2023) LAMP2A Overexpression in Colorectal Cancer Promotes Cell Growth and Glycolysis via Chaperone-Mediated Autophagy. Oncology Letters, 27, Article No. 33.
https://doi.org/10.3892/ol.2023.14164
[30] Zheng, Y., Wu, C., Yang, J., Zhao, Y., Jia, H., Xue, M., et al. (2020) Insulin-like Growth Factor 1-Induced Enolase 2 Deacetylation by HDAC3 Promotes Metastasis of Pancreatic Cancer. Signal Transduction and Targeted Therapy, 5, Article No. 53.
https://doi.org/10.1038/s41392-020-0146-6
[31] Xue, N., Lai, F., Du, T., Ji, M., Liu, D., Yan, C., et al. (2019) Chaperone-Mediated Autophagy Degradation of IGF-1Rβ Induced by NVP-AUY922 in Pancreatic Cancer. Cellular and Molecular Life Sciences, 76, 3433-3447.
https://doi.org/10.1007/s00018-019-03080-x
[32] Ma, S.Y., Sun, K.S., Zhang, M., Zhou, X., Zheng, X.H., Tian, S.Y., et al. (2020) Disruption of Plin5 Degradation by CMA Causes Lipid Homeostasis Imbalance in NAFLD. Liver International, 40, 2427-2438.
https://doi.org/10.1111/liv.14492
[33] Zhang, Y., Li, Y., Liu, Y., Wang, H., Chen, Y., Zhang, B., et al. (2023) Alcoholic Setdb1 Suppression Promotes Hepatosteatosis in Mice by Strengthening Plin2. Metabolism, 146, Article ID: 155656.
https://doi.org/10.1016/j.metabol.2023.155656
[34] Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544.
https://doi.org/10.1016/j.jhep.2018.10.033
[35] Choi, Y., Yun, S.H., Yu, J., Mun, Y., Lee, W., Park, C.J., et al. (2023) Chaperone-Mediated Autophagy Dysregulation during Aging Impairs Hepatic Fatty Acid Oxidation via Accumulation of NCoR1. Molecular Metabolism, 76, Article ID: 101784.
https://doi.org/10.1016/j.molmet.2023.101784
[36] Angelini, G., Castagneto Gissey, L., Del Corpo, G., Giordano, C., Cerbelli, B., Severino, A., et al. (2019) New Insight into the Mechanisms of Ectopic Fat Deposition Improvement after Bariatric Surgery. Scientific Reports, 9, Article No. 17315.
https://doi.org/10.1038/s41598-019-53702-4
[37] You, Y., Li, W., Zhang, S., Hu, B., Li, Y., Li, H., et al. (2018) SNX10 Mediates Alcohol-Induced Liver Injury and Steatosis by Regulating the Activation of Chaperone-Mediated Autophagy. Journal of Hepatology, 69, 129-141.
https://doi.org/10.1016/j.jhep.2018.01.038
[38] Lee, W., Kim, H.Y., Choi, Y., Jung, S., Nam, Y.A., Zhang, Y., et al. (2022) SNX10-Mediated Degradation of LAMP2A by Nsaids Inhibits Chaperone-Mediated Autophagy and Induces Hepatic Lipid Accumulation. Theranostics, 12, 2351-2369.
https://doi.org/10.7150/thno.70692
[39] Chandwaskar, R., Dalal, R., Gupta, S., Sharma, A., Parashar, D., Kashyap, V.K., et al. (2024) Dysregulation of T Cell Response in the Pathogenesis of Inflammatory Bowel Disease. Scandinavian Journal of Immunology, 100, e13412.
https://doi.org/10.1111/sji.13412
[40] Valdor, R., Mocholi, E., Botbol, Y., Guerrero-Ros, I., Chandra, D., Koga, H., et al. (2014) Chaperone-Mediated Autophagy Regulates T Cell Responses through Targeted Degradation of Negative Regulators of T Cell Activation. Nature Immunology, 15, 1046-1054.
https://doi.org/10.1038/ni.3003
[41] Retnakumar, S.V., Geesala, R., Bretin, A., Tourneur-Marsille, J., Ogier-Denis, E., Maretzky, T., et al. (2022) Targeting the Endo-Lysosomal Autophagy Pathway to Treat Inflammatory Bowel Diseases. Journal of Autoimmunity, 128, Article ID: 102814.
https://doi.org/10.1016/j.jaut.2022.102814
[42] Wu, K., Liu, Y., Shao, S., Song, W., Chen, X., Dong, Y., et al. (2023) The Microglial Innate Immune Receptors TREM-1 and TREM-2 in the Anterior Cingulate Cortex (ACC) Drive Visceral Hypersensitivity and Depressive-Like Behaviors Following DSS-Induced Colitis. Brain, Behavior, and Immunity, 112, 96-117.
https://doi.org/10.1016/j.bbi.2023.06.003
[43] Kökten, T., Gibot, S., Lepage, P., D’Alessio, S., Hablot, J., Ndiaye, N., et al. (2017) TREM-1 Inhibition Restores Impaired Autophagy Activity and Reduces Colitis in Mice. Journal of Crohns and Colitis, 12, 230-244.
https://doi.org/10.1093/ecco-jcc/jjx129
[44] Cicchinelli, S., Gemma, S., Pignataro, G., Piccioni, A., Ojetti, V., Gasbarrini, A., et al. (2024) Intestinal Fibrogenesis in Inflammatory Bowel Diseases: Exploring the Potential Role of Gut Microbiota Metabolites as Modulators. Pharmaceuticals, 17, Article 490.
https://doi.org/10.3390/ph17040490
[45] Rahmani, F., Asgharzadeh, F., Avan, A., Barneh, F., Parizadeh, M.R., Ferns, G.A., et al. (2020) RETRACTED: Rigosertib Potently Protects against Colitis-Associated Intestinal Fibrosis and Inflammation by Regulating PI3K/AKT and NF-κB Signaling Pathways. Life Sciences, 249, Article ID: 117470.
https://doi.org/10.1016/j.lfs.2020.117470
[46] Tang, J., Zhan, M., Yin, Q., Zhou, C., Wang, C., Wo, L., et al. (2017) Impaired P65 Degradation by Decreased Chaperone-Mediated Autophagy Activity Facilitates Epithelial-to-Mesenchymal Transition. Oncogenesis, 6, e387-e387.
https://doi.org/10.1038/oncsis.2017.85
[47] Iyer, S., Enman, M., Sahay, P. and Dudeja, V. (2024) Novel Therapeutics to Treat Chronic Pancreatitis: Targeting Pancreatic Stellate Cells and Macrophages. Expert Review of Gastroenterology & Hepatology, 18, 171-183.
https://doi.org/10.1080/17474124.2024.2355969
[48] Ren, Y., Cui, Q., Zhang, J., Liu, W., Xu, M., Lv, Y., et al. (2021) Milk Fat Globule-EGF Factor 8 Alleviates Pancreatic Fibrosis by Inhibiting ER Stress-Induced Chaperone-Mediated Autophagy in Mice. Frontiers in Pharmacology, 12, Article 707259.
https://doi.org/10.3389/fphar.2021.707259