[1]
|
Sadeghloo, Z., Nabavi-Rad, A., Zali, M.R., Klionsky, D.J. and Yadegar, A. (2024) The Interplay between Probiotics and Host Autophagy: Mechanisms of Action and Emerging Insights. Autophagy. https://doi.org/10.1080/15548627.2024.2403277
|
[2]
|
Yao, R. and Shen, J. (2023) Chaperone‐Mediated Autophagy: Molecular Mechanisms, Biological Functions, and Diseases. MedComm, 4, e347. https://doi.org/10.1002/mco2.347
|
[3]
|
Mastoridou, E.M., Goussia, A.C., Kanavaros, P. and Charchanti, A.V. (2023) Involvement of Lipophagy and Chaperone-Mediated Autophagy in the Pathogenesis of Non-Alcoholic Fatty Liver Disease by Regulation of Lipid Droplets. International Journal of Molecular Sciences, 24, Article 15891. https://doi.org/10.3390/ijms242115891
|
[4]
|
Hubert, V., Weiss, S., Rees, A.J. and Kain, R. (2022) Modulating Chaperone-Mediated Autophagy and Its Clinical Applications in Cancer. Cells, 11, Article 2562. https://doi.org/10.3390/cells11162562
|
[5]
|
Dice, J.F., Walker, C.D., Byrne, B. and Cardiel, A. (1978) General Characteristics of Protein Degradation in Diabetes and Starvation. Proceedings of the National Academy of Sciences of the United States of America, 75, 2093-2097. https://doi.org/10.1073/pnas.75.5.2093
|
[6]
|
Le, S., Fu, X., Pang, M., Zhou, Y., Yin, G., Zhang, J., et al. (2022) The Antioxidative Role of Chaperone-Mediated Autophagy as a Downstream Regulator of Oxidative Stress in Human Diseases. Technology in Cancer Research & Treatment, 21, 1-15. https://doi.org/10.1177/15330338221114178
|
[7]
|
Zhu, L., He, S., Huang, L., Ren, D., Nie, T., Tao, K., et al. (2022) Chaperone‐Mediated Autophagy Degrades Keap1 and Promotes Nrf2‐Mediated Antioxidative Response. Aging Cell, 21, e13616. https://doi.org/10.1111/acel.13616
|
[8]
|
Huang, J. and Wang, J. (2024) Selective Protein Degradation through Chaperone-Mediated Autophagy: Implications for Cellular Homeostasis and Disease (Review). Molecular Medicine Reports, 31, Article No. 13. https://doi.org/10.3892/mmr.2024.13378
|
[9]
|
Filali-Mouncef, Y., Hunter, C., Roccio, F., Zagkou, S., Dupont, N., Primard, C., et al. (2021) The Ménage À Trois of Autophagy, Lipid Droplets and Liver Disease. Autophagy, 18, 50-72. https://doi.org/10.1080/15548627.2021.1895658
|
[10]
|
Yang, M., Luo, S., Chen, W., Zhao, L. and Wang, X. (2023) Chaperone-Mediated Autophagy: A Potential Target for Metabolic Diseases. Current Medicinal Chemistry, 30, 1887-1899. https://doi.org/10.2174/0929867329666220811141955
|
[11]
|
Park, C., Suh, Y. and Cuervo, A.M. (2015) Regulated Degradation of Chk1 by Chaperone-Mediated Autophagy in Response to DNA Damage. Nature Communications, 6, Article No. 6823. https://doi.org/10.1038/ncomms7823
|
[12]
|
Andrade-Tomaz, M., de Souza, I., Rocha, C.R.R. and Gomes, L.R. (2020) The Role of Chaperone-Mediated Autophagy in Cell Cycle Control and Its Implications in Cancer. Cells, 9, Article 2140. https://doi.org/10.3390/cells9092140
|
[13]
|
Ding, Z., Fu, X., Shi, Y., Zhou, J., Peng, Y., Liu, W., et al. (2016) Lamp2a Is Required for Tumor Growth and Promotes Tumor Recurrence of Hepatocellular Carcinoma. International Journal of Oncology, 49, 2367-2376. https://doi.org/10.3892/ijo.2016.3754
|
[14]
|
Desideri, E., Castelli, S., Dorard, C., Toifl, S., Grazi, G.L., Ciriolo, M.R., et al. (2022) Impaired Degradation of YAP1 and IL6ST by Chaperone-Mediated Autophagy Promotes Proliferation and Migration of Normal and Hepatocellular Carcinoma Cells. Autophagy, 19, 152-162. https://doi.org/10.1080/15548627.2022.2063004
|
[15]
|
Chava, S., Lee, C., Aydin, Y., Chandra, P.K., Dash, A., Chedid, M., et al. (2017) Chaperone-Mediated Autophagy Compensates for Impaired Macroautophagy in the Cirrhotic Liver to Promote Hepatocellular Carcinoma. Oncotarget, 8, 40019-40036. https://doi.org/10.18632/oncotarget.16685
|
[16]
|
Wu, J., Guo, J., Shi, J., Wang, H., Li, L., Guo, B., et al. (2017) CMA Down-Regulates P53 Expression through Degradation of HMGB1 Protein to Inhibit Irradiation-Triggered Apoptosis in Hepatocellular Carcinoma. World Journal of Gastroenterology, 23, 2308-2317. https://doi.org/10.3748/wjg.v23.i13.2308
|
[17]
|
Guo, B., Li, L., Guo, J., Liu, A., Wu, J., Wang, H., et al. (2017) M2 Tumor-Associated Macrophages Produce Interleukin-17 to Suppress Oxaliplatin-Induced Apoptosis in Hepatocellular Carcinoma. Oncotarget, 8, 44465-44476. https://doi.org/10.18632/oncotarget.17973
|
[18]
|
Liao, Y., Yang, Y., Pan, D., Ding, Y., Zhang, H., Ye, Y., et al. (2021) HSP90α Mediates Sorafenib Resistance in Human Hepatocellular Carcinoma by Necroptosis Inhibition under Hypoxia. Cancers, 13, Article 243. https://doi.org/10.3390/cancers13020243
|
[19]
|
Wei, S., Li, W., Liu, Y., Gao, D., Pan, J., Gu, C., et al. (2013) Disturbance of Autophagy-Lysosome Signaling Molecule Expression in Human Gastric Adenocarcinoma. Oncology Letters, 7, 635-640. https://doi.org/10.3892/ol.2013.1773
|
[20]
|
Zhou, J., Yang, J., Fan, X., Hu, S., Zhou, F., Dong, J., et al. (2016) Chaperone-Mediated Autophagy Regulates Proliferation by Targeting RND3 in Gastric Cancer. Autophagy, 12, 515-528. https://doi.org/10.1080/15548627.2015.1136770
|
[21]
|
Zhu, Y., Zhou, J., Xia, H., Chen, X., Qiu, M., Huang, J., et al. (2014) The Rho GTPase Rhoe Is a P53-Regulated Candidate Tumor Suppressor in Cancer Cells. International Journal of Oncology, 44, 896-904. https://doi.org/10.3892/ijo.2014.2245
|
[22]
|
Yoon, J., Brezden-Masley, C. and Streutker, C.J. (2021) Autophagic Heterogeneity in Gastric Adenocarcinoma. Frontiers in Oncology, 11, Article 555614. https://doi.org/10.3389/fonc.2021.555614
|
[23]
|
Zhang, S., Hu, B., You, Y., Yang, Z., Liu, L., Tang, H., et al. (2018) Sorting Nexin 10 Acts as a Tumor Suppressor in Tumorigenesis and Progression of Colorectal Cancer through Regulating Chaperone Mediated Autophagy Degradation of P21Cip1/WAF1. Cancer Letters, 419, 116-127. https://doi.org/10.1016/j.canlet.2018.01.045
|
[24]
|
Le, Y., Zhang, S., Ni, J., You, Y., Luo, K., Yu, Y., et al. (2018) Sorting Nexin 10 Controls mTOR Activation through Regulating Amino-Acid Metabolism in Colorectal Cancer. Cell Death & Disease, 9, Article No. 666. https://doi.org/10.1038/s41419-018-0719-2
|
[25]
|
Wang, M., Zhang, Z., Chen, M., Lv, Y., Tian, S., Meng, F., et al. (2023) FDW028, a Novel FUT8 Inhibitor, Impels Lysosomal Proteolysis of B7-H3 via Chaperone-Mediated Autophagy Pathway and Exhibits Potent Efficacy against Metastatic Colorectal Cancer. Cell Death & Disease, 14, Article No. 495. https://doi.org/10.1038/s41419-023-06027-0
|
[26]
|
Xuan, Y., Zhao, S., Xiao, X., Xiang, L. and Zheng, H. (2021) Inhibition of Chaperonemediated Autophagy Reduces Tumor Growth and Metastasis and Promotes Drug Sensitivity in Colorectal Cancer. Molecular Medicine Reports, 23, Article No. 360. https://doi.org/10.3892/mmr.2021.11999
|
[27]
|
Du, C., Huang, D., Peng, Y., Yao, Y., Zhao, Y., Yang, Y., et al. (2017) 5-Fluorouracil Targets Histone Acetyltransferases P300/CBP in the Treatment of Colorectal Cancer. Cancer Letters, 400, 183-193. https://doi.org/10.1016/j.canlet.2017.04.033
|
[28]
|
Shi, Z., Yang, S., Shen, C., Shao, J., Zhou, F., Liu, H., et al. (2024) LAMP2A Regulates Cisplatin Resistance in Colorectal Cancer through Mediating Autophagy. Journal of Cancer Research and Clinical Oncology, 150, Article No. 242. https://doi.org/10.1007/s00432-024-05775-6
|
[29]
|
Chen, R., Zhang, Y., Ge, Y., He, C., Wu, Z., Wang, J., et al. (2023) LAMP2A Overexpression in Colorectal Cancer Promotes Cell Growth and Glycolysis via Chaperone-Mediated Autophagy. Oncology Letters, 27, Article No. 33. https://doi.org/10.3892/ol.2023.14164
|
[30]
|
Zheng, Y., Wu, C., Yang, J., Zhao, Y., Jia, H., Xue, M., et al. (2020) Insulin-like Growth Factor 1-Induced Enolase 2 Deacetylation by HDAC3 Promotes Metastasis of Pancreatic Cancer. Signal Transduction and Targeted Therapy, 5, Article No. 53. https://doi.org/10.1038/s41392-020-0146-6
|
[31]
|
Xue, N., Lai, F., Du, T., Ji, M., Liu, D., Yan, C., et al. (2019) Chaperone-Mediated Autophagy Degradation of IGF-1Rβ Induced by NVP-AUY922 in Pancreatic Cancer. Cellular and Molecular Life Sciences, 76, 3433-3447. https://doi.org/10.1007/s00018-019-03080-x
|
[32]
|
Ma, S.Y., Sun, K.S., Zhang, M., Zhou, X., Zheng, X.H., Tian, S.Y., et al. (2020) Disruption of Plin5 Degradation by CMA Causes Lipid Homeostasis Imbalance in NAFLD. Liver International, 40, 2427-2438. https://doi.org/10.1111/liv.14492
|
[33]
|
Zhang, Y., Li, Y., Liu, Y., Wang, H., Chen, Y., Zhang, B., et al. (2023) Alcoholic Setdb1 Suppression Promotes Hepatosteatosis in Mice by Strengthening Plin2. Metabolism, 146, Article ID: 155656. https://doi.org/10.1016/j.metabol.2023.155656
|
[34]
|
Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544. https://doi.org/10.1016/j.jhep.2018.10.033
|
[35]
|
Choi, Y., Yun, S.H., Yu, J., Mun, Y., Lee, W., Park, C.J., et al. (2023) Chaperone-Mediated Autophagy Dysregulation during Aging Impairs Hepatic Fatty Acid Oxidation via Accumulation of NCoR1. Molecular Metabolism, 76, Article ID: 101784. https://doi.org/10.1016/j.molmet.2023.101784
|
[36]
|
Angelini, G., Castagneto Gissey, L., Del Corpo, G., Giordano, C., Cerbelli, B., Severino, A., et al. (2019) New Insight into the Mechanisms of Ectopic Fat Deposition Improvement after Bariatric Surgery. Scientific Reports, 9, Article No. 17315. https://doi.org/10.1038/s41598-019-53702-4
|
[37]
|
You, Y., Li, W., Zhang, S., Hu, B., Li, Y., Li, H., et al. (2018) SNX10 Mediates Alcohol-Induced Liver Injury and Steatosis by Regulating the Activation of Chaperone-Mediated Autophagy. Journal of Hepatology, 69, 129-141. https://doi.org/10.1016/j.jhep.2018.01.038
|
[38]
|
Lee, W., Kim, H.Y., Choi, Y., Jung, S., Nam, Y.A., Zhang, Y., et al. (2022) SNX10-Mediated Degradation of LAMP2A by Nsaids Inhibits Chaperone-Mediated Autophagy and Induces Hepatic Lipid Accumulation. Theranostics, 12, 2351-2369. https://doi.org/10.7150/thno.70692
|
[39]
|
Chandwaskar, R., Dalal, R., Gupta, S., Sharma, A., Parashar, D., Kashyap, V.K., et al. (2024) Dysregulation of T Cell Response in the Pathogenesis of Inflammatory Bowel Disease. Scandinavian Journal of Immunology, 100, e13412. https://doi.org/10.1111/sji.13412
|
[40]
|
Valdor, R., Mocholi, E., Botbol, Y., Guerrero-Ros, I., Chandra, D., Koga, H., et al. (2014) Chaperone-Mediated Autophagy Regulates T Cell Responses through Targeted Degradation of Negative Regulators of T Cell Activation. Nature Immunology, 15, 1046-1054. https://doi.org/10.1038/ni.3003
|
[41]
|
Retnakumar, S.V., Geesala, R., Bretin, A., Tourneur-Marsille, J., Ogier-Denis, E., Maretzky, T., et al. (2022) Targeting the Endo-Lysosomal Autophagy Pathway to Treat Inflammatory Bowel Diseases. Journal of Autoimmunity, 128, Article ID: 102814. https://doi.org/10.1016/j.jaut.2022.102814
|
[42]
|
Wu, K., Liu, Y., Shao, S., Song, W., Chen, X., Dong, Y., et al. (2023) The Microglial Innate Immune Receptors TREM-1 and TREM-2 in the Anterior Cingulate Cortex (ACC) Drive Visceral Hypersensitivity and Depressive-Like Behaviors Following DSS-Induced Colitis. Brain, Behavior, and Immunity, 112, 96-117. https://doi.org/10.1016/j.bbi.2023.06.003
|
[43]
|
Kökten, T., Gibot, S., Lepage, P., D’Alessio, S., Hablot, J., Ndiaye, N., et al. (2017) TREM-1 Inhibition Restores Impaired Autophagy Activity and Reduces Colitis in Mice. Journal of Crohn’s and Colitis, 12, 230-244. https://doi.org/10.1093/ecco-jcc/jjx129
|
[44]
|
Cicchinelli, S., Gemma, S., Pignataro, G., Piccioni, A., Ojetti, V., Gasbarrini, A., et al. (2024) Intestinal Fibrogenesis in Inflammatory Bowel Diseases: Exploring the Potential Role of Gut Microbiota Metabolites as Modulators. Pharmaceuticals, 17, Article 490. https://doi.org/10.3390/ph17040490
|
[45]
|
Rahmani, F., Asgharzadeh, F., Avan, A., Barneh, F., Parizadeh, M.R., Ferns, G.A., et al. (2020) RETRACTED: Rigosertib Potently Protects against Colitis-Associated Intestinal Fibrosis and Inflammation by Regulating PI3K/AKT and NF-κB Signaling Pathways. Life Sciences, 249, Article ID: 117470. https://doi.org/10.1016/j.lfs.2020.117470
|
[46]
|
Tang, J., Zhan, M., Yin, Q., Zhou, C., Wang, C., Wo, L., et al. (2017) Impaired P65 Degradation by Decreased Chaperone-Mediated Autophagy Activity Facilitates Epithelial-to-Mesenchymal Transition. Oncogenesis, 6, e387-e387. https://doi.org/10.1038/oncsis.2017.85
|
[47]
|
Iyer, S., Enman, M., Sahay, P. and Dudeja, V. (2024) Novel Therapeutics to Treat Chronic Pancreatitis: Targeting Pancreatic Stellate Cells and Macrophages. Expert Review of Gastroenterology & Hepatology, 18, 171-183. https://doi.org/10.1080/17474124.2024.2355969
|
[48]
|
Ren, Y., Cui, Q., Zhang, J., Liu, W., Xu, M., Lv, Y., et al. (2021) Milk Fat Globule-EGF Factor 8 Alleviates Pancreatic Fibrosis by Inhibiting ER Stress-Induced Chaperone-Mediated Autophagy in Mice. Frontiers in Pharmacology, 12, Article 707259. https://doi.org/10.3389/fphar.2021.707259
|