|
[1]
|
Sadeghloo, Z., Nabavi-Rad, A., Zali, M.R., Klionsky, D.J. and Yadegar, A. (2024) The Interplay between Probiotics and Host Autophagy: Mechanisms of Action and Emerging Insights. Autophagy. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yao, R. and Shen, J. (2023) Chaperone‐Mediated Autophagy: Molecular Mechanisms, Biological Functions, and Diseases. MedComm, 4, e347. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mastoridou, E.M., Goussia, A.C., Kanavaros, P. and Charchanti, A.V. (2023) Involvement of Lipophagy and Chaperone-Mediated Autophagy in the Pathogenesis of Non-Alcoholic Fatty Liver Disease by Regulation of Lipid Droplets. International Journal of Molecular Sciences, 24, Article 15891. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hubert, V., Weiss, S., Rees, A.J. and Kain, R. (2022) Modulating Chaperone-Mediated Autophagy and Its Clinical Applications in Cancer. Cells, 11, Article 2562. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Dice, J.F., Walker, C.D., Byrne, B. and Cardiel, A. (1978) General Characteristics of Protein Degradation in Diabetes and Starvation. Proceedings of the National Academy of Sciences of the United States of America, 75, 2093-2097. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Le, S., Fu, X., Pang, M., Zhou, Y., Yin, G., Zhang, J., et al. (2022) The Antioxidative Role of Chaperone-Mediated Autophagy as a Downstream Regulator of Oxidative Stress in Human Diseases. Technology in Cancer Research & Treatment, 21, 1-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhu, L., He, S., Huang, L., Ren, D., Nie, T., Tao, K., et al. (2022) Chaperone‐Mediated Autophagy Degrades Keap1 and Promotes Nrf2‐Mediated Antioxidative Response. Aging Cell, 21, e13616. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Huang, J. and Wang, J. (2024) Selective Protein Degradation through Chaperone-Mediated Autophagy: Implications for Cellular Homeostasis and Disease (Review). Molecular Medicine Reports, 31, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Filali-Mouncef, Y., Hunter, C., Roccio, F., Zagkou, S., Dupont, N., Primard, C., et al. (2021) The Ménage À Trois of Autophagy, Lipid Droplets and Liver Disease. Autophagy, 18, 50-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yang, M., Luo, S., Chen, W., Zhao, L. and Wang, X. (2023) Chaperone-Mediated Autophagy: A Potential Target for Metabolic Diseases. Current Medicinal Chemistry, 30, 1887-1899. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Park, C., Suh, Y. and Cuervo, A.M. (2015) Regulated Degradation of Chk1 by Chaperone-Mediated Autophagy in Response to DNA Damage. Nature Communications, 6, Article No. 6823. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Andrade-Tomaz, M., de Souza, I., Rocha, C.R.R. and Gomes, L.R. (2020) The Role of Chaperone-Mediated Autophagy in Cell Cycle Control and Its Implications in Cancer. Cells, 9, Article 2140. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ding, Z., Fu, X., Shi, Y., Zhou, J., Peng, Y., Liu, W., et al. (2016) Lamp2a Is Required for Tumor Growth and Promotes Tumor Recurrence of Hepatocellular Carcinoma. International Journal of Oncology, 49, 2367-2376. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Desideri, E., Castelli, S., Dorard, C., Toifl, S., Grazi, G.L., Ciriolo, M.R., et al. (2022) Impaired Degradation of YAP1 and IL6ST by Chaperone-Mediated Autophagy Promotes Proliferation and Migration of Normal and Hepatocellular Carcinoma Cells. Autophagy, 19, 152-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chava, S., Lee, C., Aydin, Y., Chandra, P.K., Dash, A., Chedid, M., et al. (2017) Chaperone-Mediated Autophagy Compensates for Impaired Macroautophagy in the Cirrhotic Liver to Promote Hepatocellular Carcinoma. Oncotarget, 8, 40019-40036. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wu, J., Guo, J., Shi, J., Wang, H., Li, L., Guo, B., et al. (2017) CMA Down-Regulates P53 Expression through Degradation of HMGB1 Protein to Inhibit Irradiation-Triggered Apoptosis in Hepatocellular Carcinoma. World Journal of Gastroenterology, 23, 2308-2317. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Guo, B., Li, L., Guo, J., Liu, A., Wu, J., Wang, H., et al. (2017) M2 Tumor-Associated Macrophages Produce Interleukin-17 to Suppress Oxaliplatin-Induced Apoptosis in Hepatocellular Carcinoma. Oncotarget, 8, 44465-44476. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Liao, Y., Yang, Y., Pan, D., Ding, Y., Zhang, H., Ye, Y., et al. (2021) HSP90α Mediates Sorafenib Resistance in Human Hepatocellular Carcinoma by Necroptosis Inhibition under Hypoxia. Cancers, 13, Article 243. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Wei, S., Li, W., Liu, Y., Gao, D., Pan, J., Gu, C., et al. (2013) Disturbance of Autophagy-Lysosome Signaling Molecule Expression in Human Gastric Adenocarcinoma. Oncology Letters, 7, 635-640. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhou, J., Yang, J., Fan, X., Hu, S., Zhou, F., Dong, J., et al. (2016) Chaperone-Mediated Autophagy Regulates Proliferation by Targeting RND3 in Gastric Cancer. Autophagy, 12, 515-528. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhu, Y., Zhou, J., Xia, H., Chen, X., Qiu, M., Huang, J., et al. (2014) The Rho GTPase Rhoe Is a P53-Regulated Candidate Tumor Suppressor in Cancer Cells. International Journal of Oncology, 44, 896-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yoon, J., Brezden-Masley, C. and Streutker, C.J. (2021) Autophagic Heterogeneity in Gastric Adenocarcinoma. Frontiers in Oncology, 11, Article 555614. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, S., Hu, B., You, Y., Yang, Z., Liu, L., Tang, H., et al. (2018) Sorting Nexin 10 Acts as a Tumor Suppressor in Tumorigenesis and Progression of Colorectal Cancer through Regulating Chaperone Mediated Autophagy Degradation of P21Cip1/WAF1. Cancer Letters, 419, 116-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Le, Y., Zhang, S., Ni, J., You, Y., Luo, K., Yu, Y., et al. (2018) Sorting Nexin 10 Controls mTOR Activation through Regulating Amino-Acid Metabolism in Colorectal Cancer. Cell Death & Disease, 9, Article No. 666. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, M., Zhang, Z., Chen, M., Lv, Y., Tian, S., Meng, F., et al. (2023) FDW028, a Novel FUT8 Inhibitor, Impels Lysosomal Proteolysis of B7-H3 via Chaperone-Mediated Autophagy Pathway and Exhibits Potent Efficacy against Metastatic Colorectal Cancer. Cell Death & Disease, 14, Article No. 495. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Xuan, Y., Zhao, S., Xiao, X., Xiang, L. and Zheng, H. (2021) Inhibition of Chaperonemediated Autophagy Reduces Tumor Growth and Metastasis and Promotes Drug Sensitivity in Colorectal Cancer. Molecular Medicine Reports, 23, Article No. 360. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Du, C., Huang, D., Peng, Y., Yao, Y., Zhao, Y., Yang, Y., et al. (2017) 5-Fluorouracil Targets Histone Acetyltransferases P300/CBP in the Treatment of Colorectal Cancer. Cancer Letters, 400, 183-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Shi, Z., Yang, S., Shen, C., Shao, J., Zhou, F., Liu, H., et al. (2024) LAMP2A Regulates Cisplatin Resistance in Colorectal Cancer through Mediating Autophagy. Journal of Cancer Research and Clinical Oncology, 150, Article No. 242. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, R., Zhang, Y., Ge, Y., He, C., Wu, Z., Wang, J., et al. (2023) LAMP2A Overexpression in Colorectal Cancer Promotes Cell Growth and Glycolysis via Chaperone-Mediated Autophagy. Oncology Letters, 27, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zheng, Y., Wu, C., Yang, J., Zhao, Y., Jia, H., Xue, M., et al. (2020) Insulin-like Growth Factor 1-Induced Enolase 2 Deacetylation by HDAC3 Promotes Metastasis of Pancreatic Cancer. Signal Transduction and Targeted Therapy, 5, Article No. 53. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Xue, N., Lai, F., Du, T., Ji, M., Liu, D., Yan, C., et al. (2019) Chaperone-Mediated Autophagy Degradation of IGF-1Rβ Induced by NVP-AUY922 in Pancreatic Cancer. Cellular and Molecular Life Sciences, 76, 3433-3447. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ma, S.Y., Sun, K.S., Zhang, M., Zhou, X., Zheng, X.H., Tian, S.Y., et al. (2020) Disruption of Plin5 Degradation by CMA Causes Lipid Homeostasis Imbalance in NAFLD. Liver International, 40, 2427-2438. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhang, Y., Li, Y., Liu, Y., Wang, H., Chen, Y., Zhang, B., et al. (2023) Alcoholic Setdb1 Suppression Promotes Hepatosteatosis in Mice by Strengthening Plin2. Metabolism, 146, Article ID: 155656. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Younossi, Z.M. (2019) Non-Alcoholic Fatty Liver Disease—A Global Public Health Perspective. Journal of Hepatology, 70, 531-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Choi, Y., Yun, S.H., Yu, J., Mun, Y., Lee, W., Park, C.J., et al. (2023) Chaperone-Mediated Autophagy Dysregulation during Aging Impairs Hepatic Fatty Acid Oxidation via Accumulation of NCoR1. Molecular Metabolism, 76, Article ID: 101784. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Angelini, G., Castagneto Gissey, L., Del Corpo, G., Giordano, C., Cerbelli, B., Severino, A., et al. (2019) New Insight into the Mechanisms of Ectopic Fat Deposition Improvement after Bariatric Surgery. Scientific Reports, 9, Article No. 17315. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
You, Y., Li, W., Zhang, S., Hu, B., Li, Y., Li, H., et al. (2018) SNX10 Mediates Alcohol-Induced Liver Injury and Steatosis by Regulating the Activation of Chaperone-Mediated Autophagy. Journal of Hepatology, 69, 129-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lee, W., Kim, H.Y., Choi, Y., Jung, S., Nam, Y.A., Zhang, Y., et al. (2022) SNX10-Mediated Degradation of LAMP2A by Nsaids Inhibits Chaperone-Mediated Autophagy and Induces Hepatic Lipid Accumulation. Theranostics, 12, 2351-2369. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chandwaskar, R., Dalal, R., Gupta, S., Sharma, A., Parashar, D., Kashyap, V.K., et al. (2024) Dysregulation of T Cell Response in the Pathogenesis of Inflammatory Bowel Disease. Scandinavian Journal of Immunology, 100, e13412. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Valdor, R., Mocholi, E., Botbol, Y., Guerrero-Ros, I., Chandra, D., Koga, H., et al. (2014) Chaperone-Mediated Autophagy Regulates T Cell Responses through Targeted Degradation of Negative Regulators of T Cell Activation. Nature Immunology, 15, 1046-1054. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Retnakumar, S.V., Geesala, R., Bretin, A., Tourneur-Marsille, J., Ogier-Denis, E., Maretzky, T., et al. (2022) Targeting the Endo-Lysosomal Autophagy Pathway to Treat Inflammatory Bowel Diseases. Journal of Autoimmunity, 128, Article ID: 102814. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wu, K., Liu, Y., Shao, S., Song, W., Chen, X., Dong, Y., et al. (2023) The Microglial Innate Immune Receptors TREM-1 and TREM-2 in the Anterior Cingulate Cortex (ACC) Drive Visceral Hypersensitivity and Depressive-Like Behaviors Following DSS-Induced Colitis. Brain, Behavior, and Immunity, 112, 96-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kökten, T., Gibot, S., Lepage, P., D’Alessio, S., Hablot, J., Ndiaye, N., et al. (2017) TREM-1 Inhibition Restores Impaired Autophagy Activity and Reduces Colitis in Mice. Journal of Crohn’s and Colitis, 12, 230-244. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Cicchinelli, S., Gemma, S., Pignataro, G., Piccioni, A., Ojetti, V., Gasbarrini, A., et al. (2024) Intestinal Fibrogenesis in Inflammatory Bowel Diseases: Exploring the Potential Role of Gut Microbiota Metabolites as Modulators. Pharmaceuticals, 17, Article 490. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Rahmani, F., Asgharzadeh, F., Avan, A., Barneh, F., Parizadeh, M.R., Ferns, G.A., et al. (2020) RETRACTED: Rigosertib Potently Protects against Colitis-Associated Intestinal Fibrosis and Inflammation by Regulating PI3K/AKT and NF-κB Signaling Pathways. Life Sciences, 249, Article ID: 117470. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Tang, J., Zhan, M., Yin, Q., Zhou, C., Wang, C., Wo, L., et al. (2017) Impaired P65 Degradation by Decreased Chaperone-Mediated Autophagy Activity Facilitates Epithelial-to-Mesenchymal Transition. Oncogenesis, 6, e387-e387. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Iyer, S., Enman, M., Sahay, P. and Dudeja, V. (2024) Novel Therapeutics to Treat Chronic Pancreatitis: Targeting Pancreatic Stellate Cells and Macrophages. Expert Review of Gastroenterology & Hepatology, 18, 171-183. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ren, Y., Cui, Q., Zhang, J., Liu, W., Xu, M., Lv, Y., et al. (2021) Milk Fat Globule-EGF Factor 8 Alleviates Pancreatic Fibrosis by Inhibiting ER Stress-Induced Chaperone-Mediated Autophagy in Mice. Frontiers in Pharmacology, 12, Article 707259. [Google Scholar] [CrossRef] [PubMed]
|