|
[1]
|
Bongarzone, S., Savickas, V., Luzi, F. and Gee, A.D. (2017) Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. Journal of Medicinal Chemistry, 60, 7213-7232. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
(2017) Correction to: 2016 ATVB Plenary Lecture: Receptor for Advanced Glycation Endproducts and Implications for the Pathogenesis and Treatment of Cardiometabolic Disorders: Spotlight on the Macrophage. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, e66.
|
|
[3]
|
Litwinoff, E., Hurtado del Pozo, C., Ramasamy, R. and Schmidt, A. (2015) Emerging Targets for Therapeutic Development in Diabetes and Its Complications: The RAGE Signaling Pathway. Clinical Pharmacology & Therapeutics, 98, 135-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yao, D. and Brownlee, M. (2009) Hyperglycemia-Induced Reactive Oxygen Species Increase Expression of the Receptor for Advanced Glycation End Products (RAGE) and RAGE Ligands. Diabetes, 59, 249-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wautier, M., Guillausseau, P. and Wautier, J. (2017) Activation of the Receptor for Advanced Glycation End Products and Consequences on Health. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 11, 305-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cicero, C.E., Mostile, G., Vasta, R., Rapisarda, V., Signorelli, S.S., Ferrante, M., et al. (2017) Metals and Neurodegenerative Diseases. A Systematic Review. Environmental Research, 159, 82-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yamagishi, S., Nakamura, K. and Matsui, T. (2009) Regulation of Advanced Glycation End Product (Age)-Receptor (RAGE) System by Ppar-Gamma Agonists and Its Implication in Cardiovascular Disease. Pharmacological Research, 60, 174-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Katakami, N. (2017) Can Soluble Receptor for Advanced Glycation End-Product (Srage) Levels in Blood Be Used as a Predictor of Cardiovascular Diseases? Atherosclerosis, 266, 223-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yamamoto, Y. and Yamamoto, H. (2012) Controlling the Receptor for Advanced Glycation End‐Products to Conquer Diabetic Vascular Complications. Journal of Diabetes Investigation, 3, 107-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Soro-Paavonen, A., Watson, A.M.D., Li, J., Paavonen, K., Koitka, A., Calkin, A.C., et al. (2008) Receptor for Advanced Glycation End Products (RAGE) Deficiency Attenuates the Development of Atherosclerosis in Diabetes. Diabetes, 57, 2461-2469. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Prasad, K. (2021) AGE-RAGE Stress and Coronary Artery Disease. International Journal of Angiology, 30, 4-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Oliveros, E., Patel, H., Kyung, S., Fugar, S., Goldberg, A., Madan, N., et al. (2019) Hypertension in Older Adults: Assessment, Management, and Challenges. Clinical Cardiology, 43, 99-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Vatner, S.F., Zhang, J., Vyzas, C., Mishra, K., Graham, R.M. and Vatner, D.E. (2021) Vascular Stiffness in Aging and Disease. Frontiers in Physiology, 12, Article 762437. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Prasad, K. and Mishra, M. (2017) Do Advanced Glycation End Products and Its Receptor Play a Role in Pathophysiology of Hypertension? The International Journal of Angiology, 26, 1-11.
|
|
[15]
|
Shao, C., Wang, J., Tian, J. and Tang, Y. (2020) Coronary Artery Disease: From Mechanism to Clinical Practice. In: Advances in Experimental Medicine and Biology, Springer, 1-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Şener, Y.Z. (2023) Factors Related to Coronary Artery Ectasia. Angiology, 74, 704-704. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Boles, U., Eriksson, P., Zhao, Y. and Henein, M.Y. (2010) Coronary Artery Ectasia: Remains a Clinical Dilemma. Coronary Artery Disease, 21, 318-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Devabhaktuni, S., Mercedes, A., Diep, J. and Ahsan, C. (2016) Coronary Artery Ectasia-A Review of Current Literature. Current Cardiology Reviews, 12, 318-323. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Turhan, H., Erbay, A.R., Yasar, A.S., Aksoy, Y., Bicer, A., Yetkin, G., et al. (2005) Plasma Soluble Adhesion Molecules; Intercellular Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1 and E-Selectin Levels in Patients with Isolated Coronary Artery Ectasia. Coronary Artery Disease, 16, 45-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Boles, U., Johansson, A., Wiklund, U., Sharif, Z., David, S., McGrory, S., et al. (2018) Cytokine Disturbances in Coronary Artery Ectasia Do Not Support Atherosclerosis Pathogenesis. International Journal of Molecular Sciences, 19, Article No. 260. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ozturk, S., Yetkin, E. and Waltenberger, J. (2018) Molecular and Cellular Insights into the Pathogenesis of Coronary Artery Ectasia. Cardiovascular Pathology, 35, 37-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Osawa, M., Yamamoto, Y., Munesue, S., Murakami, N., Sakurai, S., Watanabe, T., et al. (2007) De-N-Glycosylation or G82S Mutation of RAGE Sensitizes Its Interaction with Advanced Glycation Endproducts. Biochimica et Biophysica Acta (BBA)—General Subjects, 1770, 1468-1474. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Alique, M., Luna, C., Carracedo, J. and Ramírez, R. (2015) LDL Biochemical Modifications: A Link between Atherosclerosis and Aging. Food & Nutrition Research, 59, Article No. 29240. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rajamannan, N.M., Evans, F.J., Aikawa, E., Grande-Allen, K.J., Demer, L.L., Heistad, D.D., et al. (2011) Calcific Aortic Valve Disease: Not Simply a Degenerative Process: A Review and Agenda for Research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive Summary: Calcific Aortic Valve Disease-2011 Update. Circulation, 124, 1783-1791. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Latif, N., Sarathchandra, P., Chester, A.H. and Yacoub, M.H. (2014) Expression of Smooth Muscle Cell Markers and Co-Activators in Calcified Aortic Valves. European Heart Journal, 36, 1335-1345. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Suga, T., Iso, T., Shimizu, T., Tanaka, T., Yamagishi, S., Takeuchi, M., et al. (2011) Activation of Receptor for Advanced Glycation End Products Induces Osteogenic Differentiation of Vascular Smooth Muscle Cells. Journal of Atherosclerosis and Thrombosis, 18, 670-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, F., Zhao, Z., Cai, Z., Dong, N. and Liu, Y. (2014) Oxidized Low-Density Lipoprotein Promotes Osteoblastic Differentiation of Valvular Interstitial Cells through Rage/Mapk. Cardiology, 130, 55-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Saku, K., Tahara, N., Takaseya, T., Otsuka, H., Takagi, K., Shojima, T., et al. (2020) Pathological Role of Receptor for Advanced Glycation End Products in Calcified Aortic Valve Stenosis. Journal of the American Heart Association, 9, e015261. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Geuzebroek, G.S.C., van Amersfoorth, S.C.M., Hoogendijk, M.G., Kelder, J.C., van Hemel, N.M., de Bakker, J.M.T., et al. (2012) Increased Amount of Atrial Fibrosis in Patients with Atrial Fibrillation Secondary to Mitral Valve Disease. The Journal of Thoracic and Cardiovascular Surgery, 144, 327-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Burstein, B. and Nattel, S. (2008) Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology, 51, 802-809. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Begieneman, M.P.V., Rijvers, L., Kubat, B., Paulus, W.J., Vonk, A.B.A., van Rossum, A.C., et al. (2015) Atrial Fibrillation Coincides with the Advanced Glycation End Product Nε-(Carboxymethyl)lysine in the Atrium. The American Journal of Pathology, 185, 2096-2104. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Raposeiras-Roubín, S., Rodiño-Janeiro, B.K., Grigorian-Shamagian, L., Seoane-Blanco, A., Moure-González, M., Varela-Román, A., et al. (2012) Evidence for a Role of Advanced Glycation End Products in Atrial Fibrillation. International Journal of Cardiology, 157, 397-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yue, L., Xie, J. and Nattel, S. (2010) Molecular Determinants of Cardiac Fibroblast Electrical Function and Therapeutic Implications for Atrial Fibrillation. Cardiovascular Research, 89, 744-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Shang, L., Ananthakrishnan, R., Li, Q., Quadri, N., Abdillahi, M., Zhu, Z., et al. (2010) RAGE Modulates Hypoxia/Reoxygenation Injury in Adult Murine Cardiomyocytes via JNK and Gsk-3β Signaling Pathways. PLOS ONE, 5, e10092. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
O’Shea, K.M., Ananthakrishnan, R., Li, Q., Quadri, N., Thiagarajan, D., Sreejit, G., et al. (2017) The Formin, DIAPH1, Is a Key Modulator of Myocardial Ischemia/Reperfusion Injury. EBioMedicine, 26, 165-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Andrassy, M., Volz, H.C., Riedle, N., Gitsioudis, G., Seidel, C., Laohachewin, D., et al. (2011) HMGB1 as a Predictor of Infarct Transmurality and Functional Recovery in Patients with Myocardial Infarction. Journal of Internal Medicine, 270, 245-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Sessa, L., Gatti, E., Zeni, F., Antonelli, A., Catucci, A., Koch, M., et al. (2014) The Receptor for Advanced Glycation End-Products (RAGE) Is Only Present in Mammals, and Belongs to a Family of Cell Adhesion Molecules (CAMS). PLOS ONE, 9, e86903. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Senatus, L.M. and Schmidt, A.M. (2017) The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. Frontiers in Genetics, 8, Article No. 187. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Hudson, B.I. and Lippman, M.E. (2018) Targeting RAGE Signaling in Inflammatory Disease. Annual Review of Medicine, 69, 349-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sabbagh, M.N., Agro, A., Bell, J., Aisen, P.S., Schweizer, E. and Galasko, D. (2011) PF-04494700, an Oral Inhibitor of Receptor for Advanced Glycation End Products (RAGE), in Alzheimer Disease. Alzheimer Disease & Associated Disorders, 25, 206-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Bu, D., Rai, V., Shen, X., Rosario, R., Lu, Y., D’Agati, V., et al. (2010) Activation of the ROCK1 Branch of the Transforming Growth Factor-Β Pathway Contributes to RAGE-Dependent Acceleration of Atherosclerosis in Diabetic ApoE-Null Mice. Circulation Research, 106, 1040-1051. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Touré, F., Fritz, G., Li, Q., Rai, V., Daffu, G., Zou, Y.S., et al. (2012) Formin Mdia1 Mediates Vascular Remodeling via Integration of Oxidative and Signal Transduction Pathways. Circulation Research, 110, 1279-1293. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Manigrasso, M.B., Pan, J., Rai, V., Zhang, J., Reverdatto, S., Quadri, N., et al. (2016) Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction. Scientific Reports, 6, Article No. 22450. [Google Scholar] [CrossRef] [PubMed]
|