晚期糖基化终产物受体在心血管疾病中的研究进展
Research Progress on the Receptor of Advanced Glycation End Products in Cardiovascular Diseases
DOI: 10.12677/acm.2025.151217, PDF, HTML, XML,   
作者: 何 端, 王星玉, 杨萌甜, 王 丹:延安大学医学院,陕西 延安;西安市中心医院心血管内科,陕西 西安;潘军强, 马 锋:西安市中心医院心血管内科,陕西 西安
关键词: 晚期糖基化终产物受体高血压冠状动脉扩张主动脉瓣狭窄心房颤动心力衰竭Receptor of Advanced Glycation End Products Hypertension Coronary Artery Ectasias Aortic Stenosis Atrial Fibrillation Heart Failure
摘要: 晚期糖基化终产物受体可激活多种信号传导通路,并与多种配体相互作用,通过激活氧化应激反应及增加活性氧的产生,参与炎症反应及血栓形成等多种病理反应。以上机制与糖尿病血管并发症、心血管疾病、阿尔茨海默病、癌症生长和转移、胰岛素抵抗和非酒精性脂肪肝在内的多种疾病的发生发展相关。本综述系统总结了RAGE在多种心血管疾病中的作用机制,并梳理了RAGE作为治疗靶点的研究进展,为未来心血管疾病的防治提供了新的治疗思路。
Abstract: The receptor of advanced glycation end products can activate a variety of signal transduction pathways and interact with a variety of ligands, participating in various pathological reactions such as inflammation and thrombosis by activating oxidative stress response and increasing the production of reactive oxygen species. These mechanisms are associated with the occurrence and development of many diseases, including vascular complications of diabetes, cardiovascular disease, Alzheimer’s disease, cancer growth and metastasis, insulin resistance and non-alcoholic fatty liver disease. This review systematically summarizes the mechanism of RAGE in a variety of cardiovascular diseases, and reviews the research progress of RAGE as a therapeutic target, providing a new therapeutic idea for the prevention and treatment of cardiovascular diseases in the future.
文章引用:何端, 王星玉, 杨萌甜, 王丹, 潘军强, 马锋. 晚期糖基化终产物受体在心血管疾病中的研究进展[J]. 临床医学进展, 2025, 15(1): 1620-1626. https://doi.org/10.12677/acm.2025.151217

1. 引言

晚期糖基化终产物受体(Receptor of advanced glycation endproducts, RAGE)是一种多配体跨膜受体,结构类似于免疫球蛋白,主要由胞外部分、跨膜部分和胞内结构域组成[1]。胞外配体结构域由可变结构域V和两个恒定结构域C1结构域和C2结构域构成。可变结构域V由两个通过SS桥连接的β片段组成。而V结构域和C1结构域之间的串联在结构上并不独立,而是通过氢键和疏水键连接起来,形成一个独立于C2结构域的V-C1整合结构体。RAGE能够与多种配体相互作用,而可变结构域V和V-C1整合结构体对于RAGE与不同配体之间的相互作用起到了至关重要的作用[2] [3]

机体内单核细胞及巨噬细胞可分泌参与多种生理反应的大多数RAGE配体。RAGE与这些配体相互作用可引起多个信号级联的激活,包括ERK和JAK/STAT信号通路,而信号转导通路的激活也可诱导下游转录因子NF-κB的表达,从而上调与炎症反应(例如粘附分子、细胞因子)、血栓形成、血管收缩以及RAGE本身相关基因的表达。人体内大多数受体会在配体浓度增加时下调其表达,不同的是,RAGE的配体激活时会正向调节RAGE的表达,这可以通过RAGE的水平在富含配体的环境中增加这一事实得到证明[4]

2. RAGE作用机制

RAGE是位于细胞表面的模式识别受体之一,可与包括晚期糖基化终产物(Advanced glycation endproducts, AGE)、淀粉样蛋白β肽、S100/钙粒蛋白、高迁移率族蛋白1 (High mobility group box-1 protein, HMGB1)等在内的多种促炎配体结合。在这些配体中,AGE与RAGE之间的相互作用最为常见。AGE与RAGE相互作用,通过信号传导通路引起多种信号的激活,包括PKC、PI3K/Akt、MAPK/ERK、Src/RhoA、JAK/STAT等通路的激活,并可激活还原形式的NADPH磷酸氧化酶。这些复杂的信号通路在被激活后会刺激活性氧自由基(Reactive oxygen species, ROS)明显增加。ROS的显著增加和过度的氧化应激会损伤蛋白质并加速炎症反应的进行。这些均可导致炎症上调、氧化损伤诱导、细胞运动干扰和细胞代谢反应的产生,并最终导致细胞功能改变[5]。RAGE与AGE的相互作用还会降低内皮型一氧化氮合酶(Nitric oxide synthase, NOS)的活性,抑制一氧化氮(Nitric oxide, NO)并使其失活,产生过氧亚硝酸盐,从而导致内皮功能障碍[6]

RAGE可以在包括炎症细胞(单核细胞、巨噬细胞和淋巴细胞)、内皮细胞、平滑肌细胞、神经元、成骨细胞和破骨细胞等在内的各种细胞上表达[3]。过氧化物酶体增殖激活受体激动剂吡格列酮、罗格列酮和替米沙坦可以减少RAGE介导的氧化应激和炎症反应,从而减轻糖尿病患者的心肌损伤[7]。动物实验还表明,RAGE及其配体主要是通过改变基因表达和细胞迁移在大血管和微血管并发症的发展中发挥着重要作用[8],在啮齿动物模型中,抑制RAGE与配体之间的相互作用可减弱血管并发症的进展[9]

3. RAGE与动脉粥样硬化

动脉粥样硬化(atherosclerosis, AS)是指脂质成分沉积于血管壁,引起平滑肌细胞及胶原纤维增生,进而引起动脉管壁硬化及管壁僵硬,并在动脉内膜形成粥糜样脂质坏死病灶。AGE与RAGE相互作用可增强胰岛素样生长因子-1和血小板衍生生长因子的表达,引发氧化应激反应使NO失活,形成过氧亚硝酸盐,进一步诱导血管内皮细胞损伤和血小板活化。一项关于RAGE的动物实验中,将糖尿病大鼠与正常血糖大鼠进行对照,糖尿病大鼠颈动脉壁中RAGE表达增高,在这些大鼠颈动脉中,RAGE的表达水平可进一步升高。而野生型小鼠的动脉去内皮化会增加损伤血管中RAGE的表达,在AS中,小鼠的RAGE表达显著增加[10]。综上所述,在AS动物模型中,RAGE表达将上调,当用SRAGE或敲除RAGE基因以阻断RAGE表达时,结果表明其可有效防止小鼠AS和缺血再灌注心脏损伤的发展。这些数据均表明RAGE参与了AS的发生发展[11]

4. RAGE与高血压

高血压(Hypertention, HTN)的诊断标准为收缩压 > 140 mmHg且舒张压 > 90 mmHg。老年人高血压的发生机制包括机械血流动力学变化、动脉僵硬、自主神经失调以及肾脏老化[12]。动脉僵硬包括管壁扩大、钙化、动脉粥样硬化病变以及细胞外基质的变化,主要是由于动脉壁的各种变化造成的,如胶原蛋白和纤连蛋白的增加、弹性蛋白的碎片化和混乱以及弹性蛋白含量减少[13]

Kailash Prasad [14]等人的研究表明RAGE表达下调会降低动脉僵硬程度和血压,平滑肌细胞中的AGE-RAGE结合增强了趋化性迁移、细胞增殖和纤维蛋白原生成,进一步加深动脉僵硬的程度。这些研究表明,AGE-RAGE轴通过氧化应激及ROS生成造成动脉僵硬而引起老年人高血压的发生。

5. RAGE与冠状动脉扩张

冠状动脉扩张(coronary artery ectasias, CAE)是指由于各种原因造成冠状动脉直径比正常相邻节段扩张1.5倍以上的一种疾病,其病变形态可有弥漫性冠状动脉扩张和局限性冠状动脉扩张两种[15]。CAE的主要病理特征是脂质积聚导致泡沫细胞生成、纤维帽形成和血管壁肌弹性成分破坏[16],而血管壁肌弹性的丧失导致血管收缩能力减弱和血管壁扩张,这是CAE所特有的病理变化[17]。血管重塑是CAE中局部斑块生长以及MMP和蛋白水解酶对细胞外基质进行降解的反应[18]。大量研究可在扩张冠状动脉中检测到较高水平的粘附分子,如ICAM-1、VCAM-1、E-选择素和TNF-α [19] [20],这表明各种炎症介质可在CAE中发挥作用。尽管冠状动脉扩张的病因尚未完全阐明,但临床研究表明,CAE的病理机制与AS和动脉粥样硬化危险因素有关,而炎症是导致AS和CAE发生的共同因素[21]。RAGE的表达与配体结合增加和炎症介质(如细胞因子和MMP)产生增加有关,从而促进炎症反应[22]。细胞外基质中的AGE与RAGE作用可通过氧化应激和内皮功能障碍引起血管炎症反应[23],促进动脉壁的负向重塑,进而引起CAE [21]。研究发现,RAGE-374A等位基因的表达与CAE发生风险增加3.6倍相关。

6. RAGE与主动脉瓣狭窄

主动脉瓣狭窄(aortic stenosis, AS)是继冠状动脉疾病和原发性高血压之后常见的心血管疾病之一。长期以来,钙化AS一直被视为主动脉瓣的被动退行性疾病[24]。瓣膜间质细胞向成骨细胞和肌成纤维细胞的转分化被认为在AS瓣膜钙化的发生和进展中发挥作用[24],钙化主动脉瓣中肌成纤维细胞和血管平滑肌细胞(SMCs)标志物的表达水平与AS钙化的严重程度密切相关[25]。RAGE与AGE的结合会引起炎症和氧化应激反应,并可促进SMC的成骨细胞分化,碱性磷酸酶(ALP)、骨桥蛋白和骨钙素的过度表达就是证据[26]。此外,主动脉瓣中的RAGE激活会刺激促炎细胞因子的产生并促进主动脉瓣钙化的进展[27]。而Kosuke Saku [28]等人在通过对54名接受主动脉瓣置换术的钙化AS患者通过免疫组织化学法检测钙化主动脉瓣,研究结果表明RAGE和α SMA在钙化的主动脉瓣中共表达,其中部分与ALP和骨钙素(成骨细胞和SMemb的标志物)共同染色。钙化性AS患者的瓣膜中RAGE表达高于对照组,并与内膜中层厚度增加显著相关。这表明RAGE可能在钙化性AS的发病机制中发挥作用,它是外科瓣膜置换术后钙化性AS患者的预后标志物[28]

7. RAGE与房颤

心房颤动(atrial fibrillation, AF)是最常见的持续性临床心律失常类型。疾病本身通常不会危及生命,但AF患者在未经治疗时会通过血流动力学改变、心房和心室不同步以及进行性心房和心室机械功能障碍,使中风、心力衰竭、全身性栓塞等疾病的发病及死亡风险增高。AF的发生机制与心房结构重塑、电重塑、自主神经重塑和心外膜脂肪组织相关[29]。炎症、心房纤维化和氧化应激是诱发AF的重要因素,而心房结构重塑,特别是间质纤维化,是AF的最主要诱因[30]

有相关研究证明AGE-RAGE轴与AF的发生发展有关[31] [32]。AGE和RAGE相互作用产生促炎细胞因子和细胞粘附分子,这些因子刺激成纤维细胞增殖、迁移,而这些因子可促使其分化为肌成纤维细胞[33]。ROS也可诱导胰岛素样生长因子结合蛋白相关蛋白-2的表达,这是细胞外基质的强效诱导剂,从而增加传导的异质性和AF持续时间。而纤维细胞增殖、迁移并分化为肌成纤维细胞,产生MMP和细胞外基质调节蛋白,并增加细胞外基质调节蛋白沉积,储存在细胞外基质中的TGF-β参与心房纤维化的调节。

8. RAGE与心肌梗死

在对一组离体灌注心脏和因左前冠状动脉闭塞/再灌注而引发的体内心肌梗死(myocardial infarction, MI)相关的研究表明,在Ager缺陷小鼠或表达胞质域缺失RAGE的转基因小鼠中,当RAGE表达被阻断时,糖尿病和非糖尿病动物缺血/再灌注(I/R)损伤减少,梗死面积减少、心肌坏死减少、心脏功能和ATP逐渐恢复。在培养的心肌细胞中,缺氧/复氧(H/R)诱导可刺激RAGE依赖性JNK MAP激酶活化和GSK-3β去磷酸化,而缺乏Ager的细胞可阻止这一过程[34]。在野生型小鼠中诱导I/R后,DIAPH1表达上调;在培养的H9C2和AC16心肌细胞中,H/R也可上调DIAPH1的表达[35]。与表达DIAPH1的对照动物相比,缺失DIAPH1实验动物可减少心肌梗死面积并保留了实验性MI后的心功能[36]。以上研究说明当RAGE与配体HMGB1相互作用时,该因子的血浆水平与梗死面积和心肌梗死后残留的左心室功能有关。

9. RAGE靶向治疗

最近的进展表明,RAGE可以作为各种炎症疾病的靶点,并可用作这些疾病的晚期或早期生物标志物。AGEs-RAGE 相互作用作为潜在糖化的结果,在糖尿病、血管疾病及其进一步并发症的流行和发生中发挥的作用是众所周知的。治疗方法主要集中在减轻AGE或RAGE的形成或它们的相互作用。已鉴定出几种分子可防止AGE的形成和活性;然而,大多数分子处于临床研究的早期阶段。RAGE仅存在于哺乳动物中[37],有相关研究表明RAGE基因敲除后小鼠在胚胎发育方面仍是健康且正常的,这表明RAGE基因敲除治疗策略相对安全。相关阻断策略主要是用于抑制RAGE信号传导或RAGE与其配体的结合,因此RAGE细胞内和细胞外配体阻断剂似乎是控制RAGE介导疾病的一种有前途的策略[38]

体外研究表明,使用抗RAGE抗体和抗氧化剂可以减少血管内皮细胞功能障碍[39]。一种新型小分子抑制剂Azeliragon目前正在对AD患者进行三期临床试验,这是一种口服生物可利用分子,其可防止RAGE上的V结构域与其配体结合或相互作用[40]。此外,淀粉样蛋白b抑制剂FPS-ZM1可用于抑制淀粉样蛋白b与RAGE之间的相互作用。同时,基于细胞外配体的抑制剂或拮抗剂在RAGE介导的疾病中也非常有效。一种名为Alagebrium (ALT7-11)的抑制剂可靶向AGE的交联,应用于动物和人类中可恢复心室功能和动脉顺应性;降低血管内膜中RAGE的表达和胶原蛋白累积,并改善收缩期高血压患者的内皮功能。此外,使用醛糖还原酶抑制剂的抗AGE策略可减少AGE的产生和动脉粥样硬化斑块的形成。除了上述治疗之外,利用其他方法如SRAGE型分子的研究也具有重要意义。研究表明,通过SRAGE疗法可减轻动脉粥样硬化的发生并阻止其在糖尿病Apoe基因缺失小鼠中进一步发展[41]

在人类心脏代谢疾病中,SRAGE和ESRAGE水平低于正常水平,由于RAGE的胞质尾部对于RAGE配体介导的信号传导和随后的细胞效应必不可少[42],因此筛选出几种化合物以确定RAGE-mDia1相互作用的小分子抑制剂,并且已鉴定出一组13种化合物与RAGE的胞质结构域(CTRAGE)具有高亲和力。此外,这些化合物在体外和体内研究中均已证明可以阻断RAGE及其相关信号传导[43]

10. 总结

RAGE通过与不同配体相互作用,激活ROS及信号传导通路,在动脉粥样硬化、高血压、冠状动脉扩张、主动脉瓣狭窄、心房颤动、心衰等疾病的进展过程中发挥重要作用。通过对以上疾病发生机制的研究,可通过靶向降低体内RAGE表达,减少AGE含量及阻断RAGE与不同配体之间相互作用等方式进行相关疾病防治。然而,RAGE靶向疗法的优缺点以及RAGE阻断对人类的长期影响仍有待进一步探讨。在建立有效的RAGE靶向治疗策略之前,未来的研究仍需要对RAGE靶向阻断所造成的影响有更深入的了解。

参考文献

[1] Bongarzone, S., Savickas, V., Luzi, F. and Gee, A.D. (2017) Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective. Journal of Medicinal Chemistry, 60, 7213-7232.
https://doi.org/10.1021/acs.jmedchem.7b00058
[2] (2017) Correction to: 2016 ATVB Plenary Lecture: Receptor for Advanced Glycation Endproducts and Implications for the Pathogenesis and Treatment of Cardiometabolic Disorders: Spotlight on the Macrophage. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, e66.
[3] Litwinoff, E., Hurtado del Pozo, C., Ramasamy, R. and Schmidt, A. (2015) Emerging Targets for Therapeutic Development in Diabetes and Its Complications: The RAGE Signaling Pathway. Clinical Pharmacology & Therapeutics, 98, 135-144.
https://doi.org/10.1002/cpt.148
[4] Yao, D. and Brownlee, M. (2009) Hyperglycemia-Induced Reactive Oxygen Species Increase Expression of the Receptor for Advanced Glycation End Products (RAGE) and RAGE Ligands. Diabetes, 59, 249-255.
https://doi.org/10.2337/db09-0801
[5] Wautier, M., Guillausseau, P. and Wautier, J. (2017) Activation of the Receptor for Advanced Glycation End Products and Consequences on Health. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 11, 305-309.
https://doi.org/10.1016/j.dsx.2016.09.009
[6] Cicero, C.E., Mostile, G., Vasta, R., Rapisarda, V., Signorelli, S.S., Ferrante, M., et al. (2017) Metals and Neurodegenerative Diseases. A Systematic Review. Environmental Research, 159, 82-94.
https://doi.org/10.1016/j.envres.2017.07.048
[7] Yamagishi, S., Nakamura, K. and Matsui, T. (2009) Regulation of Advanced Glycation End Product (Age)-Receptor (RAGE) System by Ppar-Gamma Agonists and Its Implication in Cardiovascular Disease. Pharmacological Research, 60, 174-178.
https://doi.org/10.1016/j.phrs.2009.01.006
[8] Katakami, N. (2017) Can Soluble Receptor for Advanced Glycation End-Product (Srage) Levels in Blood Be Used as a Predictor of Cardiovascular Diseases? Atherosclerosis, 266, 223-225.
https://doi.org/10.1016/j.atherosclerosis.2017.09.007
[9] Yamamoto, Y. and Yamamoto, H. (2012) Controlling the Receptor for Advanced Glycation End‐Products to Conquer Diabetic Vascular Complications. Journal of Diabetes Investigation, 3, 107-114.
https://doi.org/10.1111/j.2040-1124.2011.00191.x
[10] Soro-Paavonen, A., Watson, A.M.D., Li, J., Paavonen, K., Koitka, A., Calkin, A.C., et al. (2008) Receptor for Advanced Glycation End Products (RAGE) Deficiency Attenuates the Development of Atherosclerosis in Diabetes. Diabetes, 57, 2461-2469.
https://doi.org/10.2337/db07-1808
[11] Prasad, K. (2021) AGE-RAGE Stress and Coronary Artery Disease. International Journal of Angiology, 30, 4-14.
https://doi.org/10.1055/s-0040-1721813
[12] Oliveros, E., Patel, H., Kyung, S., Fugar, S., Goldberg, A., Madan, N., et al. (2019) Hypertension in Older Adults: Assessment, Management, and Challenges. Clinical Cardiology, 43, 99-107.
https://doi.org/10.1002/clc.23303
[13] Vatner, S.F., Zhang, J., Vyzas, C., Mishra, K., Graham, R.M. and Vatner, D.E. (2021) Vascular Stiffness in Aging and Disease. Frontiers in Physiology, 12, Article 762437.
https://doi.org/10.3389/fphys.2021.762437
[14] Prasad, K. and Mishra, M. (2017) Do Advanced Glycation End Products and Its Receptor Play a Role in Pathophysiology of Hypertension? The International Journal of Angiology, 26, 1-11.
[15] Shao, C., Wang, J., Tian, J. and Tang, Y. (2020) Coronary Artery Disease: From Mechanism to Clinical Practice. In: Advances in Experimental Medicine and Biology, Springer, 1-36.
https://doi.org/10.1007/978-981-15-2517-9_1
[16] Şener, Y.Z. (2023) Factors Related to Coronary Artery Ectasia. Angiology, 74, 704-704.
https://doi.org/10.1177/00033197231152942
[17] Boles, U., Eriksson, P., Zhao, Y. and Henein, M.Y. (2010) Coronary Artery Ectasia: Remains a Clinical Dilemma. Coronary Artery Disease, 21, 318-320.
https://doi.org/10.1097/mca.0b013e32833b20da
[18] Devabhaktuni, S., Mercedes, A., Diep, J. and Ahsan, C. (2016) Coronary Artery Ectasia-A Review of Current Literature. Current Cardiology Reviews, 12, 318-323.
https://doi.org/10.2174/1573403x12666160504100159
[19] Turhan, H., Erbay, A.R., Yasar, A.S., Aksoy, Y., Bicer, A., Yetkin, G., et al. (2005) Plasma Soluble Adhesion Molecules; Intercellular Adhesion Molecule-1, Vascular Cell Adhesion Molecule-1 and E-Selectin Levels in Patients with Isolated Coronary Artery Ectasia. Coronary Artery Disease, 16, 45-50.
https://doi.org/10.1097/00019501-200502000-00009
[20] Boles, U., Johansson, A., Wiklund, U., Sharif, Z., David, S., McGrory, S., et al. (2018) Cytokine Disturbances in Coronary Artery Ectasia Do Not Support Atherosclerosis Pathogenesis. International Journal of Molecular Sciences, 19, Article No. 260.
https://doi.org/10.3390/ijms19010260
[21] Ozturk, S., Yetkin, E. and Waltenberger, J. (2018) Molecular and Cellular Insights into the Pathogenesis of Coronary Artery Ectasia. Cardiovascular Pathology, 35, 37-47.
https://doi.org/10.1016/j.carpath.2018.04.005
[22] Osawa, M., Yamamoto, Y., Munesue, S., Murakami, N., Sakurai, S., Watanabe, T., et al. (2007) De-N-Glycosylation or G82S Mutation of RAGE Sensitizes Its Interaction with Advanced Glycation Endproducts. Biochimica et Biophysica Acta (BBA)—General Subjects, 1770, 1468-1474.
https://doi.org/10.1016/j.bbagen.2007.07.003
[23] Alique, M., Luna, C., Carracedo, J. and Ramírez, R. (2015) LDL Biochemical Modifications: A Link between Atherosclerosis and Aging. Food & Nutrition Research, 59, Article No. 29240.
https://doi.org/10.3402/fnr.v59.29240
[24] Rajamannan, N.M., Evans, F.J., Aikawa, E., Grande-Allen, K.J., Demer, L.L., Heistad, D.D., et al. (2011) Calcific Aortic Valve Disease: Not Simply a Degenerative Process: A Review and Agenda for Research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive Summary: Calcific Aortic Valve Disease-2011 Update. Circulation, 124, 1783-1791.
https://doi.org/10.1161/circulationaha.110.006767
[25] Latif, N., Sarathchandra, P., Chester, A.H. and Yacoub, M.H. (2014) Expression of Smooth Muscle Cell Markers and Co-Activators in Calcified Aortic Valves. European Heart Journal, 36, 1335-1345.
https://doi.org/10.1093/eurheartj/eht547
[26] Suga, T., Iso, T., Shimizu, T., Tanaka, T., Yamagishi, S., Takeuchi, M., et al. (2011) Activation of Receptor for Advanced Glycation End Products Induces Osteogenic Differentiation of Vascular Smooth Muscle Cells. Journal of Atherosclerosis and Thrombosis, 18, 670-683.
https://doi.org/10.5551/jat.7120
[27] Li, F., Zhao, Z., Cai, Z., Dong, N. and Liu, Y. (2014) Oxidized Low-Density Lipoprotein Promotes Osteoblastic Differentiation of Valvular Interstitial Cells through Rage/Mapk. Cardiology, 130, 55-61.
https://doi.org/10.1159/000369126
[28] Saku, K., Tahara, N., Takaseya, T., Otsuka, H., Takagi, K., Shojima, T., et al. (2020) Pathological Role of Receptor for Advanced Glycation End Products in Calcified Aortic Valve Stenosis. Journal of the American Heart Association, 9, e015261.
https://doi.org/10.1161/jaha.119.015261
[29] Geuzebroek, G.S.C., van Amersfoorth, S.C.M., Hoogendijk, M.G., Kelder, J.C., van Hemel, N.M., de Bakker, J.M.T., et al. (2012) Increased Amount of Atrial Fibrosis in Patients with Atrial Fibrillation Secondary to Mitral Valve Disease. The Journal of Thoracic and Cardiovascular Surgery, 144, 327-333.
https://doi.org/10.1016/j.jtcvs.2011.09.022
[30] Burstein, B. and Nattel, S. (2008) Atrial Fibrosis: Mechanisms and Clinical Relevance in Atrial Fibrillation. Journal of the American College of Cardiology, 51, 802-809.
https://doi.org/10.1016/j.jacc.2007.09.064
[31] Begieneman, M.P.V., Rijvers, L., Kubat, B., Paulus, W.J., Vonk, A.B.A., van Rossum, A.C., et al. (2015) Atrial Fibrillation Coincides with the Advanced Glycation End Product Nε-(Carboxymethyl)lysine in the Atrium. The American Journal of Pathology, 185, 2096-2104.
https://doi.org/10.1016/j.ajpath.2015.04.018
[32] Raposeiras-Roubín, S., Rodiño-Janeiro, B.K., Grigorian-Shamagian, L., Seoane-Blanco, A., Moure-González, M., Varela-Román, A., et al. (2012) Evidence for a Role of Advanced Glycation End Products in Atrial Fibrillation. International Journal of Cardiology, 157, 397-402.
https://doi.org/10.1016/j.ijcard.2011.05.072
[33] Yue, L., Xie, J. and Nattel, S. (2010) Molecular Determinants of Cardiac Fibroblast Electrical Function and Therapeutic Implications for Atrial Fibrillation. Cardiovascular Research, 89, 744-753.
https://doi.org/10.1093/cvr/cvq329
[34] Shang, L., Ananthakrishnan, R., Li, Q., Quadri, N., Abdillahi, M., Zhu, Z., et al. (2010) RAGE Modulates Hypoxia/Reoxygenation Injury in Adult Murine Cardiomyocytes via JNK and Gsk-3β Signaling Pathways. PLOS ONE, 5, e10092.
https://doi.org/10.1371/journal.pone.0010092
[35] O’Shea, K.M., Ananthakrishnan, R., Li, Q., Quadri, N., Thiagarajan, D., Sreejit, G., et al. (2017) The Formin, DIAPH1, Is a Key Modulator of Myocardial Ischemia/Reperfusion Injury. EBioMedicine, 26, 165-174.
https://doi.org/10.1016/j.ebiom.2017.11.012
[36] Andrassy, M., Volz, H.C., Riedle, N., Gitsioudis, G., Seidel, C., Laohachewin, D., et al. (2011) HMGB1 as a Predictor of Infarct Transmurality and Functional Recovery in Patients with Myocardial Infarction. Journal of Internal Medicine, 270, 245-253.
https://doi.org/10.1111/j.1365-2796.2011.02369.x
[37] Sessa, L., Gatti, E., Zeni, F., Antonelli, A., Catucci, A., Koch, M., et al. (2014) The Receptor for Advanced Glycation End-Products (RAGE) Is Only Present in Mammals, and Belongs to a Family of Cell Adhesion Molecules (CAMS). PLOS ONE, 9, e86903.
https://doi.org/10.1371/journal.pone.0086903
[38] Senatus, L.M. and Schmidt, A.M. (2017) The AGE-RAGE Axis: Implications for Age-Associated Arterial Diseases. Frontiers in Genetics, 8, Article No. 187.
https://doi.org/10.3389/fgene.2017.00187
[39] Hudson, B.I. and Lippman, M.E. (2018) Targeting RAGE Signaling in Inflammatory Disease. Annual Review of Medicine, 69, 349-364.
https://doi.org/10.1146/annurev-med-041316-085215
[40] Sabbagh, M.N., Agro, A., Bell, J., Aisen, P.S., Schweizer, E. and Galasko, D. (2011) PF-04494700, an Oral Inhibitor of Receptor for Advanced Glycation End Products (RAGE), in Alzheimer Disease. Alzheimer Disease & Associated Disorders, 25, 206-212.
https://doi.org/10.1097/wad.0b013e318204b550
[41] Bu, D., Rai, V., Shen, X., Rosario, R., Lu, Y., D’Agati, V., et al. (2010) Activation of the ROCK1 Branch of the Transforming Growth Factor-Β Pathway Contributes to RAGE-Dependent Acceleration of Atherosclerosis in Diabetic ApoE-Null Mice. Circulation Research, 106, 1040-1051.
https://doi.org/10.1161/circresaha.109.201103
[42] Touré, F., Fritz, G., Li, Q., Rai, V., Daffu, G., Zou, Y.S., et al. (2012) Formin Mdia1 Mediates Vascular Remodeling via Integration of Oxidative and Signal Transduction Pathways. Circulation Research, 110, 1279-1293.
https://doi.org/10.1161/circresaha.111.262519
[43] Manigrasso, M.B., Pan, J., Rai, V., Zhang, J., Reverdatto, S., Quadri, N., et al. (2016) Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction. Scientific Reports, 6, Article No. 22450.
https://doi.org/10.1038/srep22450