脑铁与注意缺陷多动障碍相关性的研究进展
Research Progress on the Correlation between Brain Iron and Attention Deficit Hyperactivity Disorder
DOI: 10.12677/acm.2025.152315, PDF, HTML, XML,   
作者: 张琨基:内蒙古医科大学精神卫生学院,内蒙古 呼和浩特;白银霞*:内蒙古自治区精神卫生中心,内蒙古 呼和浩特
关键词: 脑铁注意缺陷多动障碍多巴胺磁共振成像Brain Iron Attention Deficit Hyperactivity Disorder Dopamine Magnetic Resonance Imaging
摘要: 注意缺陷多动障碍(attention deficit hyperactivity disorder, ADHD)患儿生活质量降低,社会功能减弱,同时容易导致抑郁、焦虑和行为障碍等合并症,给家庭和社会造成了巨大的负担。目前仍未有确切的生物标注物与ADHD相关。本篇综述基于近年来国内外相关文献及临床指南,总结脑铁在神经系统发育中的作用、脑铁参与ADHD发生发展的机制以及脑铁协助诊断ADHD的潜在价值,为ADHD患儿诊断和治疗提供参考。
Abstract: Children with attention deficit hyperactivity disorder (ADHD) exhibit a diminished quality of life and impaired social functioning. Concurrently, they are susceptible to comorbidities such as depression, anxiety, and behavioral disorders, thereby imposing a substantial burden on families and society. At present, no definitive biomarker has been identified to be associated with ADHD. In light of relevant domestic and international literature as well as clinical guidelines in recent years, this review comprehensively summarizes the role of brain iron in the development of the nervous system, the mechanism through which brain iron is involved in the pathogenesis and progression of ADHD, and the potential value of brain iron in facilitating the diagnosis of ADHD, with the aim of providing valuable references for the diagnosis and treatment of children with ADHD.
文章引用:张琨基, 白银霞. 脑铁与注意缺陷多动障碍相关性的研究进展[J]. 临床医学进展, 2025, 15(2): 55-61. https://doi.org/10.12677/acm.2025.152315

1. 引言

注意缺陷多动障碍(attention deficit hyperactivity disorder, ADHD)是发生于儿童时期常见的精神障碍性疾病,主要表现为注意力不集中、过度活动和情绪冲动等,患病率在5%~7.2% [1],男女患病比例约为(4~9):1 [2]。这部分患儿生活质量降低,社会功能减弱,是导致抑郁、焦虑和行为障碍等合并症的终生危险因素,发展成反社会人格、犯罪的几率显著高于正常儿童,给家庭和社会造成了巨大的负担。目前关于ADHD病理生理机制尚未阐明,至今仍未有确切的生物标注物与ADHD相关。近年来脑铁含量与ADHD相关性研究日益增多,有望成为ADHD潜在标志物。本文旨在对脑铁含量与ADHD相关性进行综述,为ADHD患儿诊疗提供新思路。

2. 脑铁在神经系统发育中的作用

铁是人体必需的微量元素,在包括神经系统等多种病理生理过程中发挥重要作用。缺铁是最常见的营养障碍,动物实验证实生命早期缺铁可导致大脑结构和功能的异常,影响髓鞘形成、突触发生、表观遗传调控等过程[3]。临床试验表明,铁缺乏与婴儿心理、社交和运动发育评测低分存在显著相关性,婴儿期缺铁可对儿童认知、行为、身体发育等产生不良影响[4]。脑铁含量在生命前20年增加最为迅速。生命早期脑内铁稳态对神经元、星形胶质细胞及少突胶质细胞正常功能的维持及发育至关重要,对神经系统发育有重要意义。

脑内铁以与铁蛋白结合的形式存在于神经元、少突胶质细胞、星形胶质细胞和小胶质细胞中[5]。脑铁含量受到机体多种内在机制的严密调控,血清铁需经过多种复杂机制穿过血脑屏障进入中枢神经系统。例如,铁与铁蛋白结合形成的亲水基团通过毛细血管内皮细胞内吞穿过血脑屏障进入中枢神经系统。在发育过程中,当血脑屏障未完全形成时,铁会迅速涌入脑内,脑铁含量迅速上升,与此同时脑毛细胞血管内皮细胞中转铁蛋白受体1表达增加[6],对铁稳态调节至关重要的铁调节蛋白2在神经组织中亦呈现高表达[7]。脑铁可能通过参与神经递质代谢、能量代谢、髓鞘形成等影响神经系统功能[8]。铁是单胺代谢相关酶的组成部分,参与多巴胺、肾上腺素、去甲肾上腺素等递质的合成代谢。另外,铁主要定位于线粒体,线粒体功能受到细胞质铁水平的严格控制[9],铁作为细胞色素C氧化酶的组成部分,是氧化磷酸化途径中重要的一环,在细胞能量产生、信号转导、线粒体代谢中起着重要作用[10]。研究表明脑铁代谢失调与认知能力障碍有关[11],在神经退行性疾病中可能发挥作用,如帕金森病、阿尔茨海默氏症等。除此之外,脑铁含量降低与幼儿和青少年的语言发育迟缓、运动控制障碍和认知功能下降有关,在不宁腿综合征和自闭症谱系障碍中也发现了脑铁水平降低[12]。在ADHD患儿中,多项临床研究发现脑铁含量的降低与ADHD的起病及症状严重程度存在明显相关性。

3. 脑铁参与ADHD发生发展的机制

研究表明,ADHD患儿脑铁含量与正常儿童相比显著降低[13] [14],在ADHD发生发展中可能发挥重要作用。

3.1. 脑铁而非血清铁与ADHD相关

在神经系统发育过程中,充足的母婴营养是婴儿神经系统正常发育的基础[15],而铁是与认知功能及神经系统发育高度相关的微量元素。铁缺乏在ADHD患儿中非常常见。Tseng PT等研究证实,在1.5岁~11.5岁儿童中诊断铁缺乏的患儿ADHD症状严重程度明显增加[16],几项小样本研究表明,补铁可能会改善5岁~11岁同时罹患铁缺乏ADHD患儿的症状[17] [18]。迄今为止相当多的研究对ADHD儿童血清铁含量与ADHD相关性进行了探索,尽管部分研究支持血清铁含量降低与ADHD发病有一定相关性[19],但仍有相当一部分研究得出了不同的结论。有研究提示婴儿、儿童和青少年的血清铁含量降低与ADHD类似症状(如注意力、记忆、运动控制能力下降)有关[20],但一项针对100余名未接受过药物治疗的ADHD儿童的病例对照研究发现,与正常发育的对照组相比,ADHD患儿血清铁含量并无明显差异[21]。Adisetiyo V等学者研究同样提示ADHD患儿与正常发育对照组之间血清铁含量差异并无统计学意义[13]。因此,血清铁含量并不能有效反应脑铁含量[22],脑铁含量而非血清铁含量,与ADHD密切相关。血清铁蛋白是贮存铁的重要蛋白,血清铁蛋白的水平受炎症、食物摄取影响比较大,而血清铁在缺铁早期敏感性并不高,因此,二者皆不是反应脑内铁含量的敏感指标。脑铁而非血清铁与ADHD密切相关的可能机制为,血清铁转化为脑铁需通过血脑屏障,通过一系列复杂的转运机制,确保脑内铁含量稳态,保证脑内铁含量不因血清铁含量而产生较大波动,影响神经系统功能。而脑铁含量可能在发育初期即达到一个相对平衡的状态,这也能够解释早期缺铁的婴儿后续发展成为ADHD的概率明显高于正常儿童。

根据现有研究结果,脑铁含量降低可能与ADHD神经病理生理过程有关。Shvarzman R等报道了ADHD患儿症状严重程度与脑铁含量之间存在显著相关性[23],与正常对照组相比,未接受药物治疗的ADHD患儿脑铁含量明显降低,其中尾状核及壳核脑铁含量差异最大[13]。Cortese等人发现与正常对照组相比,ADHD儿童丘脑中的脑铁含量显著降低[14]。控制多重变量后进行分析,双侧边缘纹状体区域脑铁含量降低与注意力不集中、多动症状严重程度存在显著相关性[24],通过定量磁化率映射和磁场相关成像方法评估尾状核和壳核中脑铁含量降低与行为控制能力下降有关。与没有自闭症的ADHD患儿相比,有自闭症的ADHD患儿脑铁含量更低[12]。除此之外,脑铁浓度降低也与其他神经发育障碍有关,如自闭症谱系障碍和不安腿综合征。因此未来需要更多的研究来阐明较低的脑铁含量是否可以被视为ADHD的特异性生物标志物。

3.2. 脑铁参与多巴胺系统递质合成代谢

脑铁可能通过参与多巴胺能通路、髓鞘形成等途径参与ADHD发生发展。ADHD发病机制复杂,目前普遍认为ADHD为多因素共同致病,而非单一因素致病。多项研究表明遗传是参与ADHD起病的重要因素。从ADHD家系、双生子等多方面进行研究,结果显示ADHD有显著的遗传倾向,其中多巴胺系统基因、去甲肾上腺素转运体基因、5-羟色胺系统基因、儿茶酚胺氧位甲基转移酶基因等被认为是与儿童ADHD发生发展密切相关[6]。大多数与ADHD相关的基因与多巴胺能递质功能有关(如多巴胺转运蛋白等) [6],因此多巴胺作为一种与执行力及精神活动明显相关的神经递质,在ADHD发病的病理生理过程中可能发挥重要作用[25]

Cortese等学者于2008年提出铁缺乏会影响中枢神经多巴胺的合成,可能是导致ADHD发生发展的重要因素[26]。依赖于这些神经递质的社会情感发展、执行功能和记忆过程也可能受到铁缺乏的影响。铁在大脑中异质分布,铁在基底神经节结构中浓度最高,例如尾状核、壳核、伏隔核和苍白球,基底节明显铁富集的原因及其发生的机制尚不完全清楚,但基底节富含多巴胺,作为基底节–丘脑–皮质环的一环,在多种认知和运动功能中起关键作用[27]-[29]。有报道表明与正常发育儿童相比,富含多巴胺受体的皮质下区域(即尾状核和苍白球)是运动及情绪调节的核心部位[30],在ADHD患儿中体积明显缩小[31]。此外,与正常发育的男性相比,ADHD患者中可观察到基底节多灶性改变[32]。提示多巴胺能系统与ADHD密切相关。除此之外,鉴于精神兴奋剂通过阻断多巴胺转运蛋白间接增加突触多巴胺水平可缓解ADHD部分症状,亦支持多巴胺是ADHD的重要介质,多种多巴胺能受体和多巴胺转运蛋白的表达失调是ADHD临床症状表现的核心因素。铁是参与多巴胺合成的关键组分,是ADHD病因学研究中需被重视的关键因素。铁是酪氨酸羟化酶、单胺氧化酶合成所必需的介质,是酪氨酸羟化酶的限速辅助因子,而酪氨酸羟化酶是多巴胺代谢通路中多巴胺合成所必需的酶[33]。因此铁是调节多巴胺递质合成代谢的关键元素,脑铁含量可能反映了神经系统中多巴胺系统递质的合成代谢情况。

ADHD患儿中脑内多巴胺水平降低与疾病症状存在相关性[34]。研究发现脑铁含量较高的区域与儿童大脑中多巴胺的分布区域基本一致,表明脑铁含量可能通过影响多巴胺能等神经递质代谢在ADHD的发生发展中发挥作用。因为ADHD病理生理学的特征是丘脑缺铁、低多巴胺能状态、缺乏觉醒和睡眠障碍。铁缺乏与纹状体中多巴胺转运蛋白密度和活性降低以及多巴胺受体减少有关。此外,铁缺乏可通过影响神经细胞能量代谢进而影响大脑功能。在少突胶质细胞中,铁作为脂质合成的辅助因子亦参与髓鞘形成[35],进而影响神经系统功能。现有研究证实不安腿综合征与铁缺乏明显相关,而不安腿综合征是ADHD的常见共患疾病,因此二者可能存在共同的病理生理学途径[36],基于以上,不同层面均提示脑铁与ADHD密切相关,其可能的机制是脑铁参与调控多巴胺递质的合成代谢等过程进而参与ADHD发生发展。

4. 脑铁协助诊断ADHD的潜在价值

目前尚无明确的特异性生物标志物用于诊断ADHD。根据美国精神病学会制定的《精神障碍诊断与统计手册》第五版(DSM-5) ADHD诊断标准,ADHD患者的诊断主要基于患者的临床症状和各种评估量表,这些量表具有高度的主观性,会导致漏诊或误诊[37]。如何以更科学的方式诊断ADHD是我们下一步面临的挑战。使用磁共振成像(magnetic resonance imaging, MRI)测量ADHD患儿脑铁含量是一种无创敏感且高度特异性的方法,或可能够更精准地反映脑铁含量,进而协助ADHD的患者诊疗。

ADHD患者中大脑可表现为体积减小,并出现相应功能异常[38]。因此,基于MRI的自动化/计算机化方法可以部分取代从行为数据中诊断ADHD的主观方法。大脑内组织铁含量高于其他器官,尤其大脑灰质中铁含量明显升高(如基底节),与分子成像中测量多巴胺生物标志物所需的放射性示踪剂相比,铁的强磁性会显著影响MRI信号衰减,脑铁可被视为一种无创的内源性造影剂,MRI无创评估脑铁含量显得更加简便易行[39]。MRI评估脑铁含量的最常用的方法是横向弛豫率,通常称为R2、R2*和R2'。因为测量结果会受到与铁无关的其他生物物理因素的影响,使针对铁的弛豫率测量的方法特异性不足,因此学者们近年来开发了更先进的MRI检测脑铁含量的方法,如定量磁化率映射和磁场相关成像、定量磁化率映射,对评估脑铁含量具有高度特异性,很好地解决了横向弛豫率特异性不足的问题。尽管这些先进的方法仍需要进一步优化,但这些方法用于临床检测脑铁含量进而应用于ADHD诊疗仍有广泛的前景[40]。下一步需要更多的临床和基础研究进一步验证脑铁含量在ADHD发生发展中的作用。MRI作为一种无创且简便易行的检查手段,希望通过MRI对脑铁含量进行评估,进而筛查出ADHD高危患者,对ADHD诊疗提供帮助,并根据脑铁含量对患者制定个体化诊疗方案,以期未来能够作为一种重要的诊疗辅助手段广泛应用于临床。

5. 总结展望

脑铁含量在ADHD病理生理过程中发挥重要作用,通过MRI新技术评估脑铁含量,有望成为诊断ADHD的有效标志物。首先,多巴胺能系统与ADHD密切相关,脑铁参与多巴胺能系统代谢,其次目前主要通过放射性核素去检测多巴胺能递质,MRI新技术可安全无辐射检测脑铁含量进一步反应多巴胺能递质情况评估ADHD。但目前脑铁含量应用于临床协助诊断ADHD仍存在限制,针对此方面研究仍不足,需提供更多的证据来验证脑铁含量作为ADHD生物标志物的潜力。

NOTES

*通讯作者。

参考文献

[1] Salari, N., Ghasemi, H., Abdoli, N., Rahmani, A., Shiri, M.H., Hashemian, A.H., et al. (2023) The Global Prevalence of ADHD in Children and Adolescents: A Systematic Review and Meta-Analysis. Italian Journal of Pediatrics, 49, Article No. 48.
https://doi.org/10.1186/s13052-023-01456-1
[2] Rucklidge, J.J. (2010) Gender Differences in Attention-Deficit/hyperactivity Disorder. Psychiatric Clinics of North America, 33, 357-373.
https://doi.org/10.1016/j.psc.2010.01.006
[3] Georgieff, M.K. (2011) Long-term Brain and Behavioral Consequences of Early Iron Deficiency. Nutrition Reviews, 69, S43-S48.
https://doi.org/10.1111/j.1753-4887.2011.00432.x
[4] Wang, Y., Huang, L., Zhang, L., Qu, Y. and Mu, D. (2017) Iron Status in Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis. PLOS ONE, 12, e0169145.
https://doi.org/10.1371/journal.pone.0169145
[5] Ward, R.J., Zucca, F.A., Duyn, J.H., Crichton, R.R. and Zecca, L. (2014) The Role of Iron in Brain Ageing and Neurodegenerative Disorders. The Lancet Neurology, 13, 1045-1060.
https://doi.org/10.1016/s1474-4422(14)70117-6
[6] Hare, D., Ayton, S., Bush, A. and Lei, P. (2013) A Delicate Balance: Iron Metabolism and Diseases of the Brain. Frontiers in Aging Neuroscience, 5, Article No. 34.
https://doi.org/10.3389/fnagi.2013.00034
[7] Porras, C.A. and Rouault, T.A. (2022) Iron Homeostasis in the CNS: An Overview of the Pathological Consequences of Iron Metabolism Disruption. International Journal of Molecular Sciences, 23, Article No. 4490.
https://doi.org/10.3390/ijms23094490
[8] Kelly, C., Couch, R.K., Ha, V.T., Bodart, C.M., Wu, J., Huff, S., et al. (2023) Iron Status Influences Mitochondrial Disease Progression in Complex I-Deficient Mice. eLife, 12, e75825.
https://doi.org/10.7554/elife.75825
[9] Walter, P.B., Knutson, M.D., Paler-Martinez, A., Lee, S., Xu, Y., Viteri, F.E., et al. (2002) Iron Deficiency and Iron Excess Damage Mitochondria and Mitochondrial DNA in Rats. Proceedings of the National Academy of Sciences, 99, 2264-2269.
https://doi.org/10.1073/pnas.261708798
[10] Little, A.G., Lau, G., Mathers, K.E., Leary, S.C. and Moyes, C.D. (2018) Comparative Biochemistry of Cytochrome C Oxidase in Animals. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 224, 170-184.
https://doi.org/10.1016/j.cbpb.2017.11.005
[11] Spence, H., McNeil, C.J. and Waiter, G.D. (2020) The Impact of Brain Iron Accumulation on Cognition: A Systematic Review. PLOS ONE, 15, e0240697.
https://doi.org/10.1371/journal.pone.0240697
[12] Tang, S., Liu, X., Nie, L., Chen, Z., Ran, Q. and He, L. (2022) Diagnosis of Children with Attention-Deficit/Hyperactivity Disorder (ADHD) Comorbid Autistic Traits (ATs) by Applying Quantitative Magnetic Resonance Imaging Techniques. Frontiers in Psychiatry, 13, Article ID: 1038471.
https://doi.org/10.3389/fpsyt.2022.1038471
[13] Adisetiyo, V., Jensen, J.H., Tabesh, A., Deardorff, R.L., Fieremans, E., Di Martino, A., et al. (2014) Multimodal MR Imaging of Brain Iron in Attention Deficit Hyperactivity Disorder: A Noninvasive Biomarker That Responds to Psychostimulant Treatment? Radiology, 272, 524-532.
https://doi.org/10.1148/radiol.14140047
[14] Cortese, S., Brown, T.E., Corkum, P., Gruber, R., O’Brien, L.M., Stein, M., et al. (2013) Assessment and Management of Sleep Problems in Youths with Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 52, 784-796.
https://doi.org/10.1016/j.jaac.2013.06.001
[15] Cusick, S.E. and Georgieff, M.K. (2016) The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. The Journal of Pediatrics, 175, 16-21.
https://doi.org/10.1016/j.jpeds.2016.05.013
[16] Tseng, P., Cheng, Y., Yen, C., Chen, Y., Stubbs, B., Whiteley, P., et al. (2018) Peripheral Iron Levels in Children with Attention-Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis. Scientific Reports, 8, Article No. 788.
https://doi.org/10.1038/s41598-017-19096-x
[17] Sever, Y., Ashkenazi, A., Tyano, S. and Weizman, A. (1997) Iron Treatment in Children with Attention Deficit Hyperactivity Disorder: A Preliminary Report. Neuropsychobiology, 35, 178-180.
https://doi.org/10.1159/000119341
[18] Konofal, E., Lecendreux, M., Deron, J., Marchand, M., Cortese, S., Zaïm, M., et al. (2008) Effects of Iron Supplementation on Attention Deficit Hyperactivity Disorder in Children. Pediatric Neurology, 38, 20-26.
https://doi.org/10.1016/j.pediatrneurol.2007.08.014
[19] Degremont, A., Jain, R., Philippou, E. and Latunde-Dada, G.O. (2020) Brain Iron Concentrations in the Pathophysiology of Children with Attention Deficit/Hyperactivity Disorder: A Systematic Review. Nutrition Reviews, 79, 615-626.
https://doi.org/10.1093/nutrit/nuaa065
[20] McCann, J.C. and Ames, B.N. (2007) An Overview of Evidence for a Causal Relation between Iron Deficiency during Development and Deficits in Cognitive or Behavioral Function. The American Journal of Clinical Nutrition, 85, 931-945.
https://doi.org/10.1093/ajcn/85.4.931
[21] Donfrancesco, R., Parisi, P., Vanacore, N., Martines, F., Sargentini, V. and Cortese, S. (2012) Iron and ADHD: Time to Move beyond Serum Ferritin Levels. Journal of Attention Disorders, 17, 347-357.
https://doi.org/10.1177/1087054711430712
[22] Garcia-Malo, C., Novo-Ponte, S., Castro-Villacañas Farzamnia, A., Boi, S., Miranda Castillo, C., Romero Peralta, S., et al. (2021) Correlation between Systemic Iron Parameters and Substantia Nigra Iron Stores in Restless Legs Syndrome. Sleep Medicine, 85, 191-195.
https://doi.org/10.1016/j.sleep.2021.07.027
[23] Shvarzman, R., Crocetti, D., Rosch, K.S., Li, X. and Mostofsky, S.H. (2022) Reduced Basal Ganglia Tissue-Iron Concentration in School-Age Children with Attention-Deficit/Hyperactivity Disorder Is Localized to Limbic Circuitry. Experimental Brain Research, 240, 3271-3288.
https://doi.org/10.1007/s00221-022-06484-7
[24] Adisetiyo, V., Gray, K.M., Jensen, J.H. and Helpern, J.A. (2019) Brain Iron Levels in Attention-Deficit/Hyperactivity Disorder Normalize as a Function of Psychostimulant Treatment Duration. NeuroImage: Clinical, 24, Article ID: 101993.
https://doi.org/10.1016/j.nicl.2019.101993
[25] Rubia, K. (2018) Cognitive Neuroscience of Attention Deficit Hyperactivity Disorder (ADHD) and Its Clinical Translation. Frontiers in Human Neuroscience, 12, Article No. 100.
https://doi.org/10.3389/fnhum.2018.00100
[26] Cortese, S., Lecendreux, M., Bernardina, B.D., Mouren, M.C., Sbarbati, A. and Konofal, E. (2008) Attention-Deficit/Hyperactivity Disorder, Tourette’s Syndrome, and Restless Legs Syndrome: The Iron Hypothesis. Medical Hypotheses, 70, 1128-1132.
https://doi.org/10.1016/j.mehy.2007.10.013
[27] Brass, S.D., Chen, N., Mulkern, R.V. and Bakshi, R. (2006) Magnetic Resonance Imaging of Iron Deposition in Neurological Disorders. Topics in Magnetic Resonance Imaging, 17, 31-40.
https://doi.org/10.1097/01.rmr.0000245459.82782.e4
[28] Haber, S.N. and Knutson, B. (2009) The Reward Circuit: Linking Primate Anatomy and Human Imaging. Neuropsychopharmacology, 35, 4-26.
https://doi.org/10.1038/npp.2009.129
[29] Jellen, L.C., Lu, L., Wang, X., Unger, E.L., Earley, C.J., Allen, R.P., et al. (2013) Iron Deficiency Alters Expression of Dopamine-Related Genes in the Ventral Midbrain in Mice. Neuroscience, 252, 13-23.
https://doi.org/10.1016/j.neuroscience.2013.07.058
[30] Tewari, A., Jog, R. and Jog, M.S. (2016) The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures in Motor Control. Frontiers in Systems Neuroscience, 10, Article No. 17.
https://doi.org/10.3389/fnsys.2016.00017
[31] Rosch, K.S., Crocetti, D., Hirabayashi, K., Denckla, M.B., Mostofsky, S.H. and Mahone, E.M. (2018) Reduced Subcortical Volumes among Preschool-Age Girls and Boys with ADHD. Psychiatry Research: Neuroimaging, 271, 67-74.
https://doi.org/10.1016/j.pscychresns.2017.10.013
[32] Seymour, K.E., Tang, X., Crocetti, D., Mostofsky, S.H., Miller, M.I. and Rosch, K.S. (2017) Anomalous Subcortical Morphology in Boys, but Not Girls, with ADHD Compared to Typically Developing Controls and Correlates with Emotion Dysregulation. Psychiatry Research: Neuroimaging, 261, 20-28.
https://doi.org/10.1016/j.pscychresns.2017.01.002
[33] Ramsey, A.J., Hillas, P.J. and Fitzpatrick, P.F. (1996) Characterization of the Active Site Iron in Tyrosine Hydroxylase. Redox States of the Iron. Journal of Biological Chemistry, 271, 24395-24400.
https://doi.org/10.1074/jbc.271.40.24395
[34] Luo, Y., Weibman, D., Halperin, J.M. and Li, X. (2019) A Review of Heterogeneity in Attention Deficit/Hyperactivity Disorder (ADHD). Frontiers in Human Neuroscience, 13, Article No. 42.
https://doi.org/10.3389/fnhum.2019.00042
[35] Möller, H.E., Bossoni, L., Connor, J.R., Crichton, R.R., Does, M.D., Ward, R.J., et al. (2019) Iron, Myelin, and the Brain: Neuroimaging Meets Neurobiology. Trends in Neurosciences, 42, 384-401.
https://doi.org/10.1016/j.tins.2019.03.009
[36] Cortese, S., Konofal, E., Lecendreux, M., Arnulf, I., Mouren, M., Darra, F., et al. (2005) Restless Legs Syndrome and Attention-Deficit/Hyperactivity Disorder: A Review of the Literature. Sleep, 28, 1007-1013.
https://doi.org/10.1093/sleep/28.8.1007
[37] Kraegeloh‐Mann, I. (2021) Interference with Prenatal, Perinatal, and Neonatal Brain Development Is Associated with a High Risk for Autism and Attention‐Deficit/Hyperactivity Disorder. Developmental Medicine & Child Neurology, 64, 10.
https://doi.org/10.1111/dmcn.15056
[38] Rigler, T., Manor, I., Kalansky, A., Shorer, Z., Noyman, I. and Sadaka, Y. (2016) New DSM-5 Criteria for ADHD—Does It Matter? Comprehensive Psychiatry, 68, 56-59.
https://doi.org/10.1016/j.comppsych.2016.03.008
[39] Dusek, P., Dezortova, M. and Wuerfel, J. (2013) Imaging of Iron. In: International Review of Neurobiology, Elsevier, 195-239.
https://doi.org/10.1016/b978-0-12-410502-7.00010-7
[40] Ide, S., Kakeda, S., Ueda, I., Watanabe, K., Murakami, Y., Moriya, J., et al. (2014) Internal Structures of the Globus Pallidus in Patients with Parkinson’s Disease: Evaluation with Quantitative Susceptibility Mapping (QSM). European Radiology, 25, 710-718.
https://doi.org/10.1007/s00330-014-3472-7