早发性卵巢功能不全的生物学治疗研究进展
Advances of Biological Therapies in Premature Ovarian Insufficiency
摘要: 早发性卵巢功能不全(premature ovarian insufficiency, POI)指育龄期女性过早出现卵巢功能衰退,可严重影响患者生活质量及生育能力,且其发病率呈逐年上升的趋势。目前以激素替代治疗为主的传统治疗方式在一定程度可以改善患者症状,但对于生育力的提高有限。在过去数十年中逐步开展了生物学疗法,因其生物成分的修复及再生能力而成为恢复生育力较为有前景的治疗方式。本文将就生物学治疗对卵巢功能的改善的研究进展进行综述。
Abstract: Premature ovarian insufficiency (POI) is a condition in which ovarian function declines prematurely in women of childbearing age. It has seriously affected patients’ quality of life and fertility, and its incidence is increasing year by year. Currently, hormone replacement therapy (HRT) is the primary conventional treatment, offering symptomatic relief but with limited efficacy in improving fertility outcomes. Over the past decades, the development of biological therapies has shown increasing promise for restoring fertility, due to the repairing and regenerating ability of their biological components. This article reviews the advancements in research on the role of biological therapies in improving ovarian function.
文章引用:赵铭, 吴瑞瑾. 早发性卵巢功能不全的生物学治疗研究进展[J]. 临床医学进展, 2025, 15(4): 2325-2333. https://doi.org/10.12677/acm.2025.1541185

1. 引言

早发性卵巢功能不全(premature ovarian insufficiency, POI)指女性在育龄期出现卵巢功能障碍,主要临床表现为月经周期紊乱或闭经,伴不孕或难以怀孕的情况[1],定义为40岁以下的女性存在至少4个月的停经,且血清中的雌二醇水平降低,至少有两次卵泡刺激素(follicle-stimulating hormone, FSH)水平大于25 IU/L (两次测量时间至少相隔4周)。

过去20年中POI的患病率呈上升趋势。据报道,40岁前女性出现POI的风险约为1% [2]。2014年,一项大型研究显示,2.8%的中国女性在40岁前体验更年期症状[3]。此外,2019年的一项荟萃分析显示,POI的患病率增加至3.7% [4]。最新的荟萃分析整合了1946年至2021年的数据,显示全球POI的总体患病率为3.5%,而在发展中国家则高达5.3% [5]。POI作为一种复杂的临床综合征,对育龄期女性造成了极大的生理及心理困扰,包括血管舒缩症状(潮热、盗汗)、泌尿生殖系统症状(阴道干涩、疼痛)、神经功能损害、心血管风险增加、骨骼健康恶化、不孕不育和社会心理问题等,因此,POI的治疗研究成为医学界关注的焦点。本文将综述现阶段临床中新的生物学治疗方法及其潜在优势,并为该领域未来研究方向提供建议。

2. POI可严重损害女性生活质量及生育力

卵巢是女性生殖系统的主要生殖器官之一,具有两个关键功能:产生具备成熟发育能力的卵母细胞,以及分泌支持受精和妊娠的类固醇激素[6]。由于原始卵泡库的耗竭和生殖轴衰老时间在个体间差异显著,正常的生殖衰老过程也呈现个体差异。早发性卵巢功能不全的主要原因包括遗传、免疫异常、医源性因素、感染、环境影响及生活方式等。目前研究指出,POI主要通过卵泡功能障碍和卵泡衰竭两种机制实现[7]

由于早发性卵巢功能不全患者体内雌激素水平降低,这类女性常出现多种临床症状及相关健康问题,最常见的是潮热和盗汗等围绝经期症状。此外,性类固醇在维持骨量中发挥重要作用,雌激素维持女性80%的皮质骨量[8]。与月经规律的女性相比,POI患者的雌激素及睾酮水平偏低,骨密度显著下降,导致骨质疏松症风险增加[9]。一项系统性综述表明,POI患者的平均妊娠年龄约为30岁,妊娠率范围为2.2%至14.2% [10],包括自然妊娠与辅助生殖。研究显示,更年期可显著增加动脉硬化的风险,其机制为血清雌激素水平降低导致促炎细胞因子浓度升高,从而抑制内皮依赖性血管舒张和一氧化氮合成,进而加剧动脉硬化[11]。与高血压、吸烟和糖尿病等经典心血管疾病(cardiovascular disease, CVD)危险因素相比,POI被认为是CVD的一个独立且适度的危险因素[12]。已有研究探讨POI患者在认知方面的变化,发现未接受激素替代治疗的医源性POI患者发生认知功能受损、痴呆和帕金森病的风险更高[13] [14],提示早期雌激素缺乏可能对神经功能产生负面影响。有研究表明,POI会对女性心理健康造成严重影响,女性魅力的丧失和青春的终结可能导致自尊心和性满足感下降[15]。在POI女性中,抑郁症的患病率可高达24% [16] [17]。2022年的一项横断面研究发现,与健康女性相比,未接受激素替代治疗的POI女性在总体生活质量、生理、心理和社会领域的得分显著降低[18]

3. POI的传统治疗

对于所有POI女性,推荐在预期卵巢功能停止之前实施激素替代疗法(hormone replacement therapy, HRT)。临床普遍认为,通过HRT可以有效改善低雌激素状态、缓解相关围绝经期症状,预防远期并发症,并提高生活质量。此外,HRT在诱发青春期女性第二性征、维护心理健康及骨健康等方面发挥着重要作用。除HRT外,临床还应用其他治疗制剂,如生长激素、膳食补充剂(包括辅酶Q10、钙补充剂、维生素D、褪黑素等)以及中医药等。研究发现,卵泡液中的生长激素浓度与卵母细胞质量有关,体外补充生长激素有利于提高类固醇激素的生成,促进卵母细胞成熟及胚胎质量[19]。一项Meta分析显示,结合脱氢表雄酮、辅酶Q10及生长激素的辅助生殖治疗,对卵巢低反应患者的妊娠预后具有改善作用[20]。辅酶Q10通过改善卵巢细胞的能量代谢和抗氧化功能,提高卵母细胞质量。褪黑素则通过抗氧化作用及调节昼夜节律,改善卵巢环境并缓解失眠症状。此外,中药在整体调理方面强调补气养血、调节内分泌以恢复卵巢功能。多项研究表明,与单独使用HRT相比,中药联合HRT治疗更加有效,能够更好地降低卵泡刺激素和黄体生成素水平,提高临床缓解率[21] [22]

虽然传统治疗手段能够在一定程度上改善卵巢功能指标或缓解相关症状,但仍存在局限性。有研究表明,在接受HRT治疗的患者中,仍有10%~25%的人群经历性不适和持续的绝经期泌尿生殖系统综合征(genitourinary syndrome of menopause, GSM)症状[23]。Jiang等人的研究发现,尽管HRT可以改善POI患者雌二醇及孕酮水平,但无法降低FSH水平,表明HRT无法抑制POI患者的卵巢纤维化[24]。Sato等的回顾性研究显示,病程越长,卵泡发育的可能性和妊娠概率越低[25]。因此研究者认为HRT治疗对卵巢功能恢复无明显作用。此外,HRT需要长期治疗,患者的依从性也是一大难题。在一项动物模型研究中,补充辅酶 Q10被证明能延缓老年动物模型的卵巢储备消耗,恢复卵母细胞线粒体基因表达并改善线粒体活性。然而,该补充对年轻雌性动物的卵巢储备及卵母细胞质量无显著影响,表明辅酶Q10对线粒体功能完整的动物的生育力并无益处[26]。另有研究证实,中药能有效调节环磷酰胺诱导的POI小鼠的激素水平,促进卵泡生长并诱导排卵[27] [28],但针对后续生育力的研究及有效的临床验证尚显不足。

近年来,越来越多的人开始将目光着眼于如何促使卵巢年轻化、解决生育需求。然而,现有治疗手段仍难以满足患者对恢复生育力的需求。因此,针对早发性卵巢功能不全的治疗亟需探索更为先进和有效的策略。本文将简要介绍新型生物学治疗方法的作用机制及研究进展,这些方法有望为POI患者提供新的治疗选择。

4. 生物学治疗可能是改善卵巢功能的新型治疗方式

生物学治疗(biological therapy),也称为生物疗法或生物制剂治疗,是通过利用活体有机体(如细胞、基因、蛋白质或生物制剂)或其衍生物用于疾病治疗的医疗技术。二十世纪七八十年代生物学的发展点燃了人们对于生物疗法的兴趣[29]。生物学技术的革新及对生物机制的深入研究,改变了我们对细胞增殖、分化,免疫系统以及细胞间相互作用的理解,并为识别针对特定细胞因子和细胞的蛋白质抗体治疗提供了新的思路,同时为纯化可用于临床的生物材料奠定了技术基础,开启了生物治疗的新时代。最初,生物学治疗主要聚焦于风湿病学、皮肤病学、胃肠病学和神经病学领域的自身免疫疾病,如类风湿性关节炎、牛皮癣、炎性肠病和多发性硬化症等[30],随后也扩展至肿瘤疾病(如淋巴瘤、白血病和乳腺癌) [31]。目前应用于POI的常见生物学治疗方式包括富血小板血浆治疗、干细胞治疗、免疫治疗以及外泌体治疗。这些生物学疗法的主要优势在于它们不仅对症治疗,还能促进细胞再生,甚至逆转部分卵巢功能的损失,根本性地解决卵巢衰退问题。干细胞、外泌体和富血小板血浆能直接作用于卵巢组织,以促进细胞再生和功能恢复。而针对免疫相关的POI,免疫治疗则能够根据患者的病因进行个体化干预。相比于传统疗法,生物学治疗的副作用更少,但仍需进一步研究和验证。

Waldeyer在1870年提出的假设认为哺乳动物的卵巢储备在出生时是固定的[32]。然而,近年来,越来越多的证据表明成人的卵巢中存在卵原干细胞(oogonial stem cells, OSC),这使得卵泡池的补充成为可能。有研究表示,卵巢所的卵原干细胞在特定条件下可能被激活[33],尽管该激活尚未被证实能在成人卵巢中自然发生。这一理论支持了卵巢年轻化的概念,并推动了生物学治疗在恢复卵巢功能研究中的热潮。随着再生医学和转化医学的发展,利用细胞及其衍生物进行治疗,正成为提高早发性卵巢功能不全患者生育力的关键方法。

4.1. 富血小板血浆治疗

富血小板血浆(platelet-rich plasma, PRP)是通过离心技术从全血中提取的血小板浓缩物,富含大量生长因子,能诱导多种生物活性蛋白的释放,广泛应用于组织愈合和再生。PRP中的生长因子已被证实在增强胶原合成、骨细胞增殖、成纤维细胞趋化、巨噬细胞活化、血管生成、免疫细胞趋化、内皮细胞迁移和有丝分裂、上皮细胞分化和间充质细胞及上皮细胞分泌细胞因子方面发挥重要作用。有研究表明,PRP能够增加卵巢组织中ANGPT2和KDR等血管生成相关转录因子的表达[34],以及通过5-羟色胺刺激颗粒细胞分泌孕酮和雌二醇,促进卵母细胞成熟[35]。近年来,作为提高中老年妇女或卵巢功能减退女性妊娠率的手段,PRP治疗受到了广泛关注。在2020年的一项试点研究中,对311名POI女性实施PRP治疗,结果显示总受孕率为11.6%,其中自然受孕率为7.4%,体外受精受孕率为4.2%。在这311名患者中,有25人(8%)成功活产,另有8%的患者进行了胚胎冷冻[36]。一项临床研究发现,在月经周期第3天进行PRP治疗的POI女性中,约60%患者恢复了月经周期。此外,PRP治疗改善了卵泡刺激素和抗苗勒氏管激素(serum antimullerian hormone, AMH)水平,并且提高了窦卵泡数(antral follicle count, AFC),甚至改善了辅助生育的结果[37]。一项2022年病例报道中,一名32岁女性被诊断为POI,表现为卵泡刺激素升高(FSH > 40 mIU/mL),抗苗勒氏管激素极低(AMH < 0.01 ng/mL),在接受阴道PRP治疗后,潮热和盗汗等围绝经期症状显著改善[38]。对于有HRT禁忌症的患者,如易栓症和自身免疫性疾病患者,PRP可作为有效的治疗选择。尽管目前在POI治疗中未见明显不良反应,但在其他医学应用中,PRP的使用可能导致术后感染、炎症及过敏等不良事件。此外,PRP的应用尚缺乏充分的研究,尤其是在最佳注射频率和疗效持续时间等方面,未来需要开展更大规模的随机对照试验以验证其有效性。

4.2. 干细胞治疗

干细胞(stem cells, SCs)具有自我修复和再生的能力,主要分为胚胎干细(embryonic stem cells, ESCs)、成体干细胞(adult stem cells, ASCs)和诱导多能干细胞(induced pluripotent stem cells, iPSCs)。间充质干细胞(mesenchymal stem cell, MSC)是成体干细胞的一个特定亚群,起源于多种组织,包括骨髓、脂肪组织、经血、脐带、羊水、羊膜、胎盘和子宫内膜等。最近对早发性卵巢功能不全动物模型的研究显示,干细胞疗法可能改善卵巢结构和功能[39],因此有望成为逆转卵巢功能的有效治疗方式。由于其独特的细胞特性和在体内的长期存活,许多研究人员认为间充质干细胞是治疗POI的理想种子细胞[40]。其中,骨髓来源的间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)被视为间充质干细胞的“金标准”[41]。这些细胞通过激活多种机制(如营养供给、旁分泌、免疫调节和分化)影响并改善受损组织的再生。迄今为止,已有化疗诱导的POI动物模型(如小鼠、大鼠和兔子)用于评估间充质干细胞的疗效。其中一些研究报告显示,骨髓间充质干细胞治疗后,卵巢体积增大、E2水平升高、AMH水平升高及妊娠率上升[42]。在2021年一项非随机对照临床研究中,对9例卵巢早衰患者进行脂肪源性间充质干细胞移植后,有4例患者月经恢复[43]。尽管干细胞在临床应用中展现出潜力,但其应用仍面临多重挑战。除了移植排斥、肿瘤转化及细胞来源有限之外,感染风险、细胞分化不均、免疫反应等因素也不可忽视。干细胞提取和植入过程可能引发感染,而细胞在体内的分化不均可能导致不良后果。此外,患者个体差异导致对治疗的反应不一,使得干细胞疗法的普适性受到限制。在推进此类治疗的同时,需进行全面评估和监测,以确保其安全性与有效性,并为未来的临床应用奠定坚实基础。

4.3. 外泌体治疗

外泌体是纳米尺度的细胞外囊泡,作为细胞间运输蛋白质、脂质和核酸的载体,发挥着细胞间通讯的重要作用[44]。近年来的研究表明,干细胞治疗的再生潜力主要归功于旁分泌效应和外泌体的作用,外泌体通过分泌多种因子(如细胞因子)减少细胞凋亡和炎症,促进血管生成,从而恢复卵巢功能。此外,外泌体具有改善微环境的能力,促进组织修复的同时也能调节细胞间相互作用和细胞外基质成分,进一步增强卵巢组织的再生能力[45]。相较于活细胞移植,外泌体作为无细胞疗法具有多方面的优势,包括低免疫反应、无致瘤性和无栓子形成。外泌体的安全性、剂量和效力评价可类似于传统药物,同时可在无冷冻保存剂的条件下进行储存,便于大规模生产[46]。2023年,Park等在POI小鼠模型中比较了间充质干细胞与其等量衍生外泌体的静脉注射治疗效果,结果显示外泌体能够有效恢复小鼠的卵巢功能和生育能力,并且对宿主及其后代没有明显副作用[47]。虽然外泌体的保质期较短,但研究表明其治疗效果与间充质干细胞相当。尽管间充质干细胞的疗效略强且持续时间更长,外泌体的低效可通过增加剂量或未来的重复注射来克服。Pu等研究发现,人脐带间充质干细胞分泌的外泌体能通过促进卵泡颗粒细胞增殖和减少细胞凋亡来改善POI大鼠的卵巢功能与生殖能力[48]。此外,已有研究证明无细胞脂肪提取物在骨骼、皮肤及生殖系统等组织修复再生中的强大潜力[49]-[51]。尽管外泌体治疗POI的临床试验仍处于早期阶段,但越来越多的学者关注这一领域,外泌体有望成为无细胞治疗POI的新策略。

4.4. 免疫治疗

POI可能与多种器官特异性自身免疫性疾病有关,该类患者的自身免疫性疾病发病率在10%至55%之间[52]-[54]。当POI由卵巢自身免疫损伤引起时,免疫调节治疗被认为是一种有效的干预手段。在POI患者中,发现了一些与类固醇生成相关的自身抗体,这些抗体能够与颗粒细胞和卵泡细胞结合[55]。研究表明,免疫调节疗法特别是静脉注射免疫球蛋白,可以有效促进POI患者的卵巢功能恢复[56]-[58]。值得注意的是,目前所有已发表的研究均为非随机对照试验,主要以病例研究为主。在接受胸腺切除术治疗重症肌无力的患者中,也观察到卵巢功能的恢复,推测可能是通过血浆置换降低自身抗体滴度所致[59]。此外,较少见的实验性治疗方法如单克隆抗体(例如TNF-α抑制剂)也用于治疗因自身免疫性卵巢损伤引起的卵巢功能损害,旨在恢复辅助T细胞-2免疫反应[60] [61]。最近的一项小鼠POI模型研究发现,TrkB受体作为神经生长因子的结合位点,与细胞的存活、分化和生长密切相关,结果显示,TrkB激动抗体能够有效恢复卵巢功能,这可能是通过促进卵泡发育、抑制细胞凋亡以及调控相关生长因子的表达来实现的[62]。这些发现为POI的免疫调节治疗提供了新的思路,但仍需开展进一步的随机对照研究,以验证这些治疗的长期效果和安全性。

5. 总结与展望

早发性卵巢功能不全是一类严重影响女性身心健康和生育能力的临床疾病。尽管激素替代疗法仍是POI治疗的核心方法,它在改善患者生活质量方面具有一定效果,但并不能恢复卵巢功能。冻卵技术的实施存在困难,而卵子捐赠则无法满足患者对于遗传后代的期望。因此,探索合适的POI治疗方法成为生殖医学领域的重要课题。近年来,研究者们就POI的生物学治疗方式展开了大量研究,尽管这些方法在动物研究中显示出良好的效果,但尚缺乏大样本临床研究来验证其安全性及有效性。动物模型获得的数据不能直接取代临床试验。因此,未来的研究应深入探讨POI的致病机制、相关信号通路以及各类治疗方法的机制,努力为大多数POI患者制定个体化治疗方案,从而应对生育挑战。

NOTES

*通讯作者。

参考文献

[1] De Vos, M., Devroey, P. and Fauser, B.C. (2010) Primary Ovarian Insufficiency. The Lancet, 376, 911-921.
https://doi.org/10.1016/s0140-6736(10)60355-8
[2] Coulam, C.B., Adamson, S.C. and Annegers, J.F. (1986) Incidence of Premature Ovarian Failure. Obstetrics & Gynecology, 67, 604-606.
[3] Wu, X., Cai, H., Kallianpur, A., Li, H., Yang, G., Gao, J., et al. (2014) Impact of Premature Ovarian Failure on Mortality and Morbidity among Chinese Women. PLOS ONE, 9, e89597.
https://doi.org/10.1371/journal.pone.0089597
[4] Golezar, S., Ramezani Tehrani, F., Khazaei, S., Ebadi, A. and Keshavarz, Z. (2019) The Global Prevalence of Primary Ovarian Insufficiency and Early Menopause: A Meta-Analysis. Climacteric, 22, 403-411.
https://doi.org/10.1080/13697137.2019.1574738
[5] Li, M., Zhu, Y., Wei, J., Chen, L., Chen, S. and Lai, D. (2022) The Global Prevalence of Premature Ovarian Insufficiency: A Systematic Review and Meta-analysis. Climacteric, 26, 95-102.
https://doi.org/10.1080/13697137.2022.2153033
[6] Oktem, O. and Oktay, K. (2008) The Ovary: Anatomy and Function throughout Human Life. Annals of the New York Academy of Sciences, 1127, 1-9.
https://doi.org/10.1196/annals.1434.009
[7] Nelson, L.M. (2009) Primary Ovarian Insufficiency. New England Journal of Medicine, 360, 606-614.
https://doi.org/10.1056/nejmcp0808697
[8] Narla, R.R. and Ott, S.M. (2018) Bones and the Sex Hormones. Kidney International, 94, 239-242.
https://doi.org/10.1016/j.kint.2018.03.021
[9] Popat, V.B., Calis, K.A., Kalantaridou, S.N., Vanderhoof, V.H., Koziol, D., Troendle, J.F., et al. (2014) Bone Mineral Density in Young Women with Primary Ovarian Insufficiency: Results of a Three-Year Randomized Controlled Trial of Physiological Transdermal Estradiol and Testosterone Replacement. The Journal of Clinical Endocrinology & Metabolism, 99, 3418-3426.
https://doi.org/10.1210/jc.2013-4145
[10] Fraison, E., Crawford, G., Casper, G., Harris, V. and Ledger, W. (2019) Pregnancy Following Diagnosis of Premature Ovarian Insufficiency: A Systematic Review. Reproductive BioMedicine Online, 39, 467-476.
https://doi.org/10.1016/j.rbmo.2019.04.019
[11] Mittal, M., McEniery, C., Supramaniam, P.R., Cardozo, L., Savvas, M., Panay, N., et al. (2022) Impact of Micronised Progesterone and Medroxyprogesterone Acetate in Combination with Transdermal Oestradiol on Cardiovascular Markers in Women Diagnosed with Premature Ovarian Insufficiency or an Early Menopause: A Randomised Pilot Trial. Maturitas, 161, 18-26.
https://doi.org/10.1016/j.maturitas.2022.01.012
[12] Roeters van Lennep, J.E., Heida, K.Y., Bots, M.L. and Hoek, A. (2014) Cardiovascular Disease Risk in Women with Premature Ovarian Insufficiency: A Systematic Review and Meta-Analysis. European Journal of Preventive Cardiology, 23, 178-186.
https://doi.org/10.1177/2047487314556004
[13] Bove, R., Secor, E., Chibnik, L.B., Barnes, L.L., Schneider, J.A., Bennett, D.A., et al. (2014) Age at Surgical Menopause Influences Cognitive Decline and Alzheimer Pathology in Older Women. Neurology, 82, 222-229.
https://doi.org/10.1212/wnl.0000000000000033
[14] Rocca, W.A. and Henderson, V.W. (2014) Is There a Link between Gynecologic Surgeries and Alzheimer Disease? Neurology, 82, 196-197.
https://doi.org/10.1212/wnl.0000000000000043
[15] Gosset, A., Claeys, J.M., Huyghe, E. and Tremollieres, F. (2023) Sexual Function and Quality of Life in Women with Idiopathic Premature Ovarian Insufficiency. The Journal of Sexual Medicine, 20, 626-632.
https://doi.org/10.1093/jsxmed/qdad006
[16] Schmidt, P.J., Luff, J.A., Haq, N.A., Vanderhoof, V.H., Koziol, D.E., Calis, K.A., et al. (2011) Depression in Women with Spontaneous 46, XX Primary Ovarian Insufficiency. The Journal of Clinical Endocrinology & Metabolism, 96, E278-E287.
https://doi.org/10.1210/jc.2010-0613
[17] Gibson-Helm, M., Teede, H. and Vincent, A. (2014) Symptoms, Health Behavior and Understanding of Menopause Therapy in Women with Premature Menopause. Climacteric, 17, 666-673.
https://doi.org/10.3109/13697137.2014.913284
[18] Gupta, A., Nayak, D., Khare, C., Murugesan, R. and Keepanasseril, A. (2022) Quality of Life Assessment in Women with Spontaneous Premature Insufficiency: A Comparative Cross-Sectional Study. European Journal of Obstetrics & Gynecology and Reproductive Biology, 272, 226-229.
https://doi.org/10.1016/j.ejogrb.2022.03.036
[19] Liu, L., Wang, H., Xu, G. and Liu, L. (2021) Tet1 Deficiency Leads to Premature Ovarian Failure. Frontiers in Cell and Developmental Biology, 9, Article ID: 644135.
https://doi.org/10.3389/fcell.2021.644135
[20] Gong, L., Ji, H., Tang, X., Pan, L., Chen, X. and Jia, Y. (2020) Human Papillomavirus Vaccine-Associated Premature Ovarian Insufficiency and Related Adverse Events: Data Mining of Vaccine Adverse Event Reporting System. Scientific Reports, 10, Article No. 10762.
https://doi.org/10.1038/s41598-020-67668-1
[21] Zhong, H., Li, M., Yin, X., Bin, C., Zhou, S. and Wei, S. (2022) Chinese Patent Medicines Combined with Hormone Replacement Therapy for Premature Ovarian Failure: A Bayesian Network Meta-Analysis. Frontiers in Medicine, 9, Article ID: 1043390.
https://doi.org/10.3389/fmed.2022.1043390
[22] Kou, M., Ding, X., Chen, J., Liu, Y. and Liu, Y. (2016) Traditional Chinese Medicine Combined with Hormone Therapy to Treat Premature Ovarian Failure: A Meta-Analysis of Randomized Controlled Trials. African Journal of Traditional, Complementary and Alternative Medicines, 13, 160-169.
https://doi.org/10.21010/ajtcam.v13i5.21
[23] Sturdee, D.W. and Panay, N. (2010) Recommendations for the Management of Postmenopausal Vaginal Atrophy. Climacteric, 13, 509-522.
https://doi.org/10.3109/13697137.2010.522875
[24] Jiang, L., Fei, H., Tong, J., Zhou, J., Zhu, J., Jin, X., et al. (2021) Hormone Replacement Therapy Reverses Gut Microbiome and Serum Metabolome Alterations in Premature Ovarian Insufficiency. Frontiers in Endocrinology, 12, Article ID: 794496.
https://doi.org/10.3389/fendo.2021.794496
[25] Sato, T., Kusuhara, A., Kasahara, Y., Haino, T., Kishi, H. and Okamoto, A. (2021) Follicular Development during Hormone Replacement Therapy in Patients with Premature Ovarian Insufficiency. Reproductive Medicine and Biology, 20, 234-240.
https://doi.org/10.1002/rmb2.12375
[26] Ben‐Meir, A., Burstein, E., Borrego‐Alvarez, A., Chong, J., Wong, E., Yavorska, T., et al. (2015) Coenzyme Q10 Restores Oocyte Mitochondrial Function and Fertility during Reproductive Aging. Aging Cell, 14, 887-895.
https://doi.org/10.1111/acel.12368
[27] Su, C., Zhang, R., Zhang, X., Lv, M., Liu, X., Ao, K., et al. (2023) Dingkun Pill Modulate Ovarian Function in Chemotherapy-Induced Premature Ovarian Insufficiency Mice by Regulating PTEN/PI3K/Akt/foxo3a Signaling Pathway. Journal of Ethnopharmacology, 315, Article ID: 116703.
https://doi.org/10.1016/j.jep.2023.116703
[28] Hu, Y., Zhong, R., Guo, X., Li, G., Zhou, J., Yang, W., et al. (2023) Jinfeng Pills Ameliorate Premature Ovarian Insufficiency Induced by Cyclophosphamide in Rats and Correlate to Modulating IL-17A/IL-6 Axis and MEK/ERK Signals. Journal of Ethnopharmacology, 307, Article ID: 116242.
https://doi.org/10.1016/j.jep.2023.116242
[29] Perren, T. and Selby, P. (1992) Current Issues in Cancer Biological Therapy. BMJ, 304, 1621-1623.
https://doi.org/10.1136/bmj.304.6842.1621
[30] Mease, P. (2015) A Short History of Biological Therapy for Psoriatic Arthritis. Clinical and Experimental Rheumatology, 33, S104-S108.
[31] Noreña, I., Fernández-Ruiz, M. and Aguado, J.M. (2018) Viral Infections in the Biologic Therapy Era. Expert Review of Anti-infective Therapy, 16, 781-791.
https://doi.org/10.1080/14787210.2018.1521270
[32] Tilly, J.L., Niikura, Y. and Rueda, B.R. (2009) The Current Status of Evidence for and against Postnatal Oogenesis in Mammals: A Case of Ovarian Optimism versus Pessimism? Biology of Reproduction, 80, 2-12.
https://doi.org/10.1095/biolreprod.108.069088
[33] Tilly, J.L. and Telfer, E.E. (2009) Purification of Germline Stem Cells from Adult Mammalian Ovaries: A Step Closer Towards Control of the Female Biological Clock? Molecular Human Reproduction, 15, 393-398.
https://doi.org/10.1093/molehr/gap036
[34] Ahmadian, S., Sheshpari, S., Pazhang, M., Bedate, A.M., Beheshti, R., Abbasi, M.M., et al. (2020) Intra-Ovarian Injection of Platelet-Rich Plasma into Ovarian Tissue Promoted Rejuvenation in the Rat Model of Premature Ovarian Insufficiency and Restored Ovulation Rate via Angiogenesis Modulation. Reproductive Biology and Endocrinology, 18, Article No. 78.
https://doi.org/10.1186/s12958-020-00638-4
[35] Bódis, J. (2021) Role of Platelets in Female Reproduction. Human Reproduction, 37, 384-385.
https://doi.org/10.1093/humrep/deab268
[36] Cakiroglu, Y., Saltik, A., Yuceturk, A., Karaosmanoglu, O., Kopuk, S.Y., Scott, R.T., et al. (2020) Effects of Intraovarian Injection of Autologous Platelet Rich Plasma on Ovarian Reserve and IVF Outcome Parameters in Women with Primary Ovarian Insufficiency. Aging, 12, 10211-10222.
https://doi.org/10.18632/aging.103403
[37] Sfakianoudis, K., Simopoulou, M., Grigoriadis, S., Pantou, A., Tsioulou, P., Maziotis, E., et al. (2020) Reactivating Ovarian Function through Autologous Platelet-Rich Plasma Intraovarian Infusion: Pilot Data on Premature Ovarian Insufficiency, Perimenopausal, Menopausal, and Poor Responder Women. Journal of Clinical Medicine, 9, Article No. 1809.
https://doi.org/10.3390/jcm9061809
[38] Merhi, Z., Seckin, S. and Mouanness, M. (2021) Intraovarian PRP Injection Improved Hot Flashes in a Woman with Very Low Ovarian Reserve. Reproductive Sciences, 29, 614-619.
https://doi.org/10.1007/s43032-021-00655-7
[39] Huang, B., Qian, C., Ding, C., Meng, Q., Zou, Q. and Li, H. (2019) Fetal Liver Mesenchymal Stem Cells Restore Ovarian Function in Premature Ovarian Insufficiency by Targeting Mt1. Stem Cell Research & Therapy, 10, Article No. 362.
https://doi.org/10.1186/s13287-019-1490-8
[40] Liu, T., Huang, Y., Guo, L., Cheng, W. and Zou, G. (2012) CD44+/CD105+ Human Amniotic Fluid Mesenchymal Stem Cells Survive and Proliferate in the Ovary Long-Term in a Mouse Model of Chemotherapy-Induced Premature Ovarian Failure. International Journal of Medical Sciences, 9, 592-602.
https://doi.org/10.7150/ijms.4841
[41] Bao, R., Xu, P., Wang, Y., Wang, J., Xiao, L., Li, G., et al. (2017) Bone Marrow Derived Mesenchymal Stem Cells Transplantation Rescues Premature Ovarian Insufficiency Induced by Chemotherapy. Gynecological Endocrinology, 34, 320-326.
https://doi.org/10.1080/09513590.2017.1393661
[42] Mohamed, S.A., Shalaby, S.M., Abdelaziz, M., Brakta, S., Hill, W.D., Ismail, N., et al. (2018) Human Mesenchymal Stem Cells Partially Reverse Infertility in Chemotherapy-Induced Ovarian Failure. Reproductive Sciences, 25, 51-63.
https://doi.org/10.1177/1933719117699705
[43] Mashayekhi, M., Mirzadeh, E., Chekini, Z., Ahmadi, F., Eftekhari-Yazdi, P., Vesali, S., et al. (2021) Evaluation of Safety, Feasibility and Efficacy of Intra-Ovarian Transplantation of Autologous Adipose Derived Mesenchymal Stromal Cells in Idiopathic Premature Ovarian Failure Patients: Non-Randomized Clinical Trial, Phase I, First in Human. Journal of Ovarian Research, 14, Article No. 5.
https://doi.org/10.1186/s13048-020-00743-3
[44] Umair, Z., Baek, M., Song, J., An, S., Chon, S.J. and Yoon, M. (2022) Microrna-4516 in Urinary Exosomes as a Biomarker of Premature Ovarian Insufficiency. Cells, 11, Article No. 2797.
https://doi.org/10.3390/cells11182797
[45] Martirosyan, Y.O., Silachev, D.N., Nazarenko, T.A., Birukova, A.M., Vishnyakova, P.A. and Sukhikh, G.T. (2023) Stem-Cell-Derived Extracellular Vesicles: Unlocking New Possibilities for Treating Diminished Ovarian Reserve and Premature Ovarian Insufficiency. Life, 13, Article No. 2247.
https://doi.org/10.3390/life13122247
[46] Vizoso, F., Eiro, N., Cid, S., Schneider, J. and Perez-Fernandez, R. (2017) Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. International Journal of Molecular Sciences, 18, Article No. 1852.
https://doi.org/10.3390/ijms18091852
[47] Park, H., Chugh, R.M., Seok, J., Cetin, E., Mohammed, H., Siblini, H., et al. (2023) Comparison of the Therapeutic Effects between Stem Cells and Exosomes in Primary Ovarian Insufficiency: As Promising as Cells but Different Persistency and Dosage. Stem Cell Research & Therapy, 14, Article No. 165.
https://doi.org/10.1186/s13287-023-03397-2
[48] Pu, X., Zhang, L., Zhang, P., Xu, Y., Wang, J., Zhao, X., et al. (2023) Human UC-MSC-Derived Exosomes Facilitate Ovarian Renovation in Rats with Chemotherapy-Induced Premature Ovarian Insufficiency. Frontiers in Endocrinology, 14, Article ID: 1205901.
https://doi.org/10.3389/fendo.2023.1205901
[49] Liu, M., Zhang, D., Zhou, X., et al. (2022) Cell-Free Fat Extract Improves Ovarian Function and Fertility in Mice with Premature Ovarian Insufficiency. Stem Cell Research & Therapy, 13, 320.
[50] Deng, M., Wang, X., Yu, Z., Cai, Y., Liu, W., Zhou, G., et al. (2020) Cell-Free Fat Extract Promotes Tissue Regeneration in a Tissue Expansion Model. Stem Cell Research & Therapy, 11, Article No. 50.
https://doi.org/10.1186/s13287-020-1564-7
[51] Jia, Z., Kang, B., Cai, Y., Chen, C., Yu, Z., Li, W., et al. (2022) Cell-Free Fat Extract Attenuates Osteoarthritis via Chondrocytes Regeneration and Macrophages Immunomodulation. Stem Cell Research & Therapy, 13, Article No. 133.
https://doi.org/10.1186/s13287-022-02813-3
[52] Ruehsen, M.d.M., Blizzard, R.M., Garcia-Bunuel, R. and Jones, G.S. (1972) Autoimmunity and Ovarian Failure. American Journal of Obstetrics and Gynecology, 112, 693-703.
https://doi.org/10.1016/0002-9378(72)90797-1
[53] Conway, G.S., Kaltsas, G., Patel, A., Davies, M.C. and Jacobs, H.S. (1996) Characterization of Idiopathic Premature Ovarian Failure. Fertility and Sterility, 65, 337-341.
https://doi.org/10.1016/s0015-0282(16)58095-9
[54] Betterle, C., Rossi, A., Pria, S.D., Artifoni, A., Pedini, B., Gavasso, S., et al. (1993) Premature Ovarian Failure: Autoimmunity and Natural History. Clinical Endocrinology, 39, 35-43.
https://doi.org/10.1111/j.1365-2265.1993.tb01748.x
[55] Sluss, P.M. and Schneyer, A.L. (1992) Low Molecular Weight Follicle-Stimulating Hormone Receptor Binding Inhibitor in Sera from Premature Ovarian Failure Patients. The Journal of Clinical Endocrinology & Metabolism, 74, 1242-1246.
https://doi.org/10.1210/jcem.74.6.1592865
[56] Corenblum, B., Rowe, T. and Taylor, P.J. (1993) High-Dose, Short-Term Glucocorticoids for the Treatment of Infertility Resulting from Premature Ovarian Failure. Fertility and Sterility, 59, 988-991.
https://doi.org/10.1016/s0015-0282(16)55915-9
[57] Blumenfeld, Z., Halachmi, S., Alik Peretz, B., Shmuel, Z., Golan, D., Makler, A., et al. (1993) Premature Ovarian Failure—The Prognostic Application of Autoimmunity on Conception after Ovulation Induction. Fertility and Sterility, 59, 750-755.
https://doi.org/10.1016/s0015-0282(16)55854-3
[58] Cowchock, F.S., McCabe, J.L. and Montgomery, B.B. (1988) Pregnancy after Corticosteroid Administration in Premature Ovarian Failure (Polyglandular Endocrinopathy Syndrome). American Journal of Obstetrics and Gynecology, 158, 118-119.
https://doi.org/10.1016/0002-9378(88)90791-0
[59] Bateman, B.G., Nunley, W.C. and Kitchin, J.D. (1983) Reversal of Apparent Premature Ovarian Failure in a Patient with Myasthenia Gravis. Fertility and Sterility, 39, 108-110.
https://doi.org/10.1016/s0015-0282(16)46768-3
[60] Simon, A. and Laufer, N. (2012) Repeated Implantation Failure: Clinical Approach. Fertility and Sterility, 97, 1039-1043.
https://doi.org/10.1016/j.fertnstert.2012.03.010
[61] GLEICHER, N. (2002) Some Thoughts on the Reproductive Autoimmune Failure Syndrome (RAFS) and Th‐1 versus Th‐2 Immune Responses. American Journal of Reproductive Immunology, 48, 252-254.
https://doi.org/10.1034/j.1600-0897.2002.01111.x
[62] Qin, X., Zhao, Y., Zhang, T., Yin, C., Qiao, J., Guo, W., et al. (2022) TrkB Agonist Antibody Ameliorates Fertility Deficits in Aged and Cyclophosphamide-Induced Premature Ovarian Failure Model Mice. Nature Communications, 13, Article No. 914.
https://doi.org/10.1038/s41467-022-28611-2