食品与营养科学  >> Vol. 9 No. 4 (November 2020)

探讨补充Lactobacillus plantarum GKM3在肌力退化及肌肉流失之功效
The Ameliorative Effect of Lactobacillus plantarum GKM3 on Muscle Atrophy

DOI: 10.12677/HJFNS.2020.94041, PDF, HTML, XML, 下载: 129  浏览: 497 

作者: 李宗儒, 吕庭宇, 蔡侑珊, 陈炎链:葡萄王生技股份有限公司,台湾 桃园;陈劲初*:葡萄王生技股份有限公司,台湾 桃园;国立台湾大学食品科技研究所,台湾 台北;实践大学食品营养与保健生技学系,台湾 台北;中原大学生物科技学系,台湾 桃园

关键词: 肌少症肌肉萎缩益生菌Lactobacillus plantarum GKM3 Sarcopenia Muscle Atrophy Pro-biotic Lactobacillus plantarum GKM3

摘要: 因应高龄社会的趋势,肌少症(Sarcopenia)是长者应注意的潜在健康危机。肌肉的减少除了在运动表现及行动能力下降外,骨骼肌持续随着时间的流失造就了基础代谢全面性的降低,许多文献证实肌少症影响着个体在临床上愈后的表现,因此提早进行肌少症的预防与诊断,是可以降低残疾,住院以及死亡的发生率。由于至今没有一种万灵丹能有效的治疗老化,因此要如何减少肌力退化及肌肉量流失为目前治疗肌少症的核心策略。近期研究指出益生菌可以调节肠道菌群,也有部分的研究证实益生菌所改善的肠道菌丛能有效的增加蛋白质的吸收,但尚未有研究提出哪些益生菌能具有增加肌肉量与质之功效。故本研究先利用小鼠纤维母细胞(C2C12)建立地塞米松(dexamethasone)诱导肌肉萎缩之细胞平台,发现益生菌Lactobacillus plantarum GKM3具有预防肌肉萎缩之潜力,接着,我们在动物模式上,藉由禁锢(Cast immobilization)七日方式来诱导小鼠肌肉萎缩,在禁锢的第一天就将GKM3冻干粉(500 mg/kg)喂食小鼠并连续喂食两周,结果也发现在两周后量测小鼠肌耐力以及握力与对照组相比都有着显著的差异(p < 0.05),此篇研究结果可以推测GKM3有助于肌肉萎缩情况下帮助小鼠回复肌耐力与肌肉量。
Abstract: Sarcopenia is a potential healthcare crisis in elderly population. It is a skeletal muscle disorder that involved in age-progressive muscle reduction which causes an accelerated decline in strength, mobility, athletic performance, and basal metabolism. Study has found that sarcopenia also has adverse effects in clinical outcome because they are more likely to fall and become hospitalized. Therefore, early prevention and diagnosis of sarcopenia can reduce the incidence of disability, hospitalization and death. Sarcopenia has become an intense topic to focus on because decreasing muscle degeneration is the most effective strategy to improve the lifestyle at old age. Recent studies have shown that probiotics can help to regulate the intestinal microbiome by effectively increase the absorption of ingested protein. However, few researches have proposed which probiotics can help reduce muscle atrophy while sustaining its quality. In this study, we first established cellular platform mouse fibroblasts (C2C12) with dexamethasone treatment to induce myotube atrophy. We found that the probiotic Lactobacillus plantarum GKM3 has the potential to prevent myotube atrophy from dexamethasone damage. Next, we performed seven days cast immobilization (IM) on C57BL/6J mice as our in vivo muscle atrophy animal model. The IM mice were fed at beginning of the trial with GKM3 lyophilized powder (500 mg/kg) for two consecutive weeks. Muscle endurance and grip strength showed significantly improvement when compared with the control after two weeks (p < 0.05). The result showed that supplementation of GKM3 has ameliorative effect on IM induced muscle atrophy.

文章引用: 李宗儒, 吕庭宇, 蔡侑珊, 陈炎链, 陈劲初. 探讨补充Lactobacillus plantarum GKM3在肌力退化及肌肉流失之功效[J]. 食品与营养科学, 2020, 9(4): 309-317. https://doi.org/10.12677/HJFNS.2020.94041

参考文献

[1] Beaudart, C., Zaaria, M., Pasleau, F., Reginster, J.-Y. and Bruyère, O. (2017) Health Outcomes of Sarcopenia: A Sys-tematic Review and Meta-Analysis. PLoS ONE, 12, e0169548.
https://doi.org/10.1371/journal.pone.0169548
[2] Morley, J.E., Anker, S.D. and von Haehling, S. (2014) Preva-lence, Incidence, and Clinical Impact of Sarcopenia: Facts, Numbers, and Epidemiology-Update 2014. Journal of Ca-chexia, Sarcopenia and Muscle, 5, 253-259.
https://doi.org/10.1007/s13539-014-0161-y
[3] Bianchi, L., Abete, P., Bellelli, G., Bo, M., Cherubini, A., Corica, F., Di Bari, M., et al. (2017) Prevalence and Clinical Correlates of Sarcopenia, Identified According to the EWGSOP Definition and Diagnostic Algorithm, in Hospitalized Older People: The GLISTEN Study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72, 1575-1581.
https://doi.org/10.1093/gerona/glw343
[4] Cruz-Jentoft, A.J. and Sayer, A.A. (2019) Sarcopenia. The Lancet, 393, 2636-2646.
https://doi.org/10.1016/S0140-6736(19)31138-9
[5] Hunter, G.R., Singh, H., Carter, S.J., Bryan, D.R. and Fisher, G. (2019) Sarcopenia and Its Implications for Metabolic Health. Journal of Obesity, 2019, Article ID: 8031705.
https://doi.org/10.1155/2019/8031705
[6] Yanai, H. (2015) Nutrition for Sarcopenia. Journal of Clinical Medicine Research, 7, 926-931.
https://doi.org/10.14740/jocmr2361w
[7] Bian, A., Ma, Y., Zhou, X.Z., Guo, Y., Wang, W.Y., Zhang, Y.R. and Wang, X.F. (2020) Association between Sarcopenia and Levels of Growth Hormone and Insulin-Like Growth Factor-1 in the Elderly. BMC Musculoskeletal Disorders, 21, 214.
https://doi.org/10.1186/s12891-020-03236-y
[8] Lahiri, S., Kim, H., Garcia-Perez, I., Reza, M., Martin, K.A., Kundu, P., Cox, L.M., et al. (2019) The Gut Microbiota Influences Skeletal Muscle Mass and Function in Mice. Science Translational Medicine, 11, 502.
https://doi.org/10.1126/scitranslmed.aan5662
[9] Bian, A.-L., Hu, H.-Y., Rong, Y.-D., Wang, J., Wang, J.-X. and Zhou, X.-Z. (2017) A Study on Relationship between Elderly Sarcopenia and Inflammatory Factors IL-6 and TNF-α. European Journal of Medical Research, 22, 25.
https://doi.org/10.1186/s40001-017-0266-9
[10] 林诗伟, 孙至柔, 张维棠, 王启宪, 赵敞, 陈炎炼, 徐庆琳, 陈劲初. 植物乳杆菌GKM3益生菌对高脂饮食肥胖大鼠之影响[J]. 食品与营养科学, 2017, 6(2): 85-95.
[11] Aihara, M., Hirose, N., Katsuta, W., Saito, F., Maruyama, H. and Hagiwara, H. (2017) A New Model of Skeletal Muscle Atro-phy Induced by Immobilization Using a Hook-and-Loop Fastener in Mice. Journal of Physical Therapy Science, 29, 1779-1783.
https://doi.org/10.1589/jpts.29.1779
[12] Przewłócka, K., Folwarski, M., Kaźmierczak-Siedlecka, K., Skonieczna-Żydecka, K. and JacekKaczor, J. (2020) Gut- Muscle Axis Exists and May Affect Skeletal Muscle Adapta-tion to Training. Nutrients, 12, 1451.
https://doi.org/10.3390/nu12051451
[13] Lustgarten, M.S. (2019) The Role of the Gut Microbiome on Skeletal Muscle Mass and Physical Function: 2019 Update. Frontiers in Physiology, 10, 1435.
https://doi.org/10.3389/fphys.2019.01435
[14] Manickam, R., Oh, H.Y.P., Tan, C.K., Paramalingam, E. and Wahli, W. (2018) Metronidazole Causes Skeletal Muscle Atrophy and Modulates Muscle Chronometabolism. International Journal of Molecular Sciences, 19, 2418.
https://doi.org/10.3390/ijms19082418
[15] Chen, L.-H., Chen, Y.-H., Cheng, K.-C., Chien, T.-Y., Chan, C.-H., Tsao, S.-P. and Huang, H.-Y. (2018) Antiobesity Effect of Lactobacillus Reuteri 263 Associated with Energy Metabo-lism Remodeling of White Adipose Tissue in High-Energy-Diet-Fed Rats. The Journal of Nutritional Biochemistry, 54, 87-94.
https://doi.org/10.1016/j.jnutbio.2017.11.004
[16] Shen, S.N., Liao, Q.W., Liu, J.X., Pan, R., Lee, S.M.-Y. and Lin, L.G. (2019) Myricanol Rescues Dexamethasone- Induced Muscle Dysfunction via a Sirtuin 1-Dependent Mechanism. Journal of Cachexia, Sarcopenia and Muscle, 10, 429-444.
https://doi.org/10.1002/jcsm.12393
[17] Talbot, J. and Maves, L. (2016) Skeletal Muscle Fiber Type: Using Insights from Muscle Developmental Biology to Dissect Targets for Susceptibility and Resistance to Muscle Disease. Wiley Interdisciplinary Reviews. Developmental Biology, 5, 518-534.
https://doi.org/10.1002/wdev.230