土壤电阻率对特高压输电线路塔顶电位的影响
Influence of Soil Resistivity on the Potential of Tower Overhead in UHV Transmission Line
DOI: 10.12677/SG.2014.45029, PDF, HTML, 下载: 2,460  浏览: 7,478 
作者: 龚坚刚, 许杨勇:国网浙江省电力公司,杭州;林洲游, 赵 深:国网浙江省电力公司温州供电公司,温州
关键词: 火花效应冲击接地电阻土壤电阻率特高压塔顶电位防雷Spark Discharge Impulse Grounding Resistance Soil Resistivity UHV Tower Overhead Potential Lightning Protection
摘要: 本文建立了考虑电感效应和火花效应的等效接地体时变模型,搭建了特高压输电线路雷击仿真计算模型,来分析土壤电阻率对雷击特高压杆塔顶端时塔顶电位的影响规律。结果表明:当土壤电阻率较小时,塔顶电位随土壤电阻率增加而增加的速度较大,而当电阻率较大时,塔顶电位升高的比较平缓。应根据土壤电阻率情况做防雷设计。
Abstract: This paper established the equivalent model of the inductance effect and the spark effect of the grounding connector when attacked by lightning current. Meanwhile, the article explored the lightning simulation calculation model of the ultra-high voltage transmission lines, and analyzed the influence between the resistance rate and the tower potential when hit by lightning. The result indicates that: when the resistance rate of the soil is less, the tower potential increases greatly with the increase of the resistance rate; and when the resistance rate of the soil is bigger, it increases gently. So it is necessary to design the lightning protection based on the resistance rate of the soil.
文章引用:龚坚刚, 林洲游, 许杨勇, 赵深. 土壤电阻率对特高压输电线路塔顶电位的影响[J]. 智能电网, 2014, 4(5): 201-206. http://dx.doi.org/10.12677/SG.2014.45029

参考文献

[1] Vereshchagin and Wu, W.H. (1998) The analysis of lighting protection for EHV and UHV transmission lines in Russia. High Voltage Engineering, 24, 76-79.
[2] 施围, 邱毓昌, 张乔根 (2006) 高电压工程基础. 机械工程出版社, 北京.
[3] He, J.L., Gao, Y.Q., Zeng, R., et al. (2005) Effective length of counterpoise wire under lightning current. IEEE Transactions on Power Delivery, 20, 1585-1591.
[4] 高延庆 (2004) 土壤冲击击穿机理及接地系统暂态特性研究. 清华大学电机系, 北京.
[5] 解广润 (1991) 电力系统接地技术. 中国电力出版社, 北京.
[6] 赵灵, 王建国, 夏长征等 (2003) 考虑火花等效半径的输电线路杆塔伸长接地体的冲击接地电阻计算. 高压电器, 39, 22-24.
[7] Martinez, J.A. and Aranda, F.C. (2005) Lightning performance analysis of overhead transmission lines using the EMTP. IEEE Transactions on Power Delivery, 20, 2200-2210.
[8] 张颖, 高亚栋, 杜斌等 (2004) 输电线路防雷计算中的新杆塔模型. 西安交通大学学报, 38, 365-368.
[9] Motoyama, H. (2000) Analytical and experi-mental study on surge response of transmission tower. IEEE Transactions on Power Delivery, 15, 812-819.
[10] Yamada, T., Mochizuki, A., Sawada, J., et al. (1995) Experimental evaluation of a UHV tower model for lightning surge analysis. IEEE Transactions on Power Delivery, 10, 393-402.
[11] Hara, T. and Yamamoto, O. (1996) Modeling of a transmission tower for lightning surge analysis. IEEE Proceedings of Generation, Transmission and Distribution, 143, 283-289.
[12] 周炜明 (2009) 复杂土壤结构下的接地系统建模及降阻措施. 学位论文, 西南交通大学, 成都.