食品与营养科学  >> Vol. 3 No. 4 (November 2014)

锌对细胞损伤的保护机制研究进展
Research Progress on the Protections of Zinc on the Cell Damage

DOI: 10.12677/HJFNS.2014.34010, PDF, HTML,  被引量 下载: 2,064  浏览: 10,360  国家科技经费支持

作者: 李宜珈:中国农业大学食品科学与营养工程学院,北京;杨 暄, 许文涛:农业部转基因生物使用安全检验监督测试中心,北京

关键词: 氧化应激DNA损伤细胞凋亡保护作用Zinc Oxidative Stress DNA Damage Apoptosis Protection

摘要: 锌作为机体内必需的微量元素,虽然含量甚微,但对维持细胞的正常生理功能有重要作用。本文主要综述了细胞内锌稳态的调控机制及锌对细胞氧化应激、DNA损伤及细胞凋亡的保护作用及其机制并对锌研究的前景加以展望。以此显示出适量补充膳食锌的重要性。
Abstract: As an essential trace element in the body, zinc plays a very crucial role in maintaining the normal physiological function of cells. This paper mainly summarizes the regulatory mechanism of intra-cellular zinc homeostasis and displays how zinc can protect cells from oxidative stress, DNA damage or apoptosis with different level or source. At the same time, we aim to explain that it is important for us to supply dietary zinc in proper way.

文章引用: 李宜珈, 杨暄, 许文涛. 锌对细胞损伤的保护机制研究进展[J]. 食品与营养科学, 2014, 3(4): 57-63. http://dx.doi.org/10.12677/HJFNS.2014.34010

参考文献

[1] 于康 (2012) 于康家庭营养全书——中国家庭必备手册 .科学技术文献出版社, 北京.
[2] 于昱, 吕林, 张亿一, 等 (2007) 影响动物肠道锌吸收因素的研究进展. 动物营养学报, 19(suppl), 459-464.
[3] 弓福利 (2002) 糖尿病患者血清铜锌的测定分析.实用医学杂志, 9, 60.
[4] Kirchgessner, M. (1993) Homeostasis and homeorhesis in trace element metabolism. In: Anke, M., Meissner, D. and Mills, C.F., Eds., Trace Elements in Man and Animals-Tema, Underwood Memorial Lecture, 8, 4.
[5] King, J.C., Shames, D.M. and Woodhouse, L.R. (2000) Zinc homeostasis in humans. The Journal of Nutrition, 130, 1360-1366.
[6] Jeong, J. and Eide, D.J. (2013) The SLC39 family of zinc transporters. Molecular Aspects of Medicine, 34, 612-619.
[7] Vašák, M. and Meloni, G. (2011) Chemistry and biol-ogy of mammalian metallothioneins. Journal of Biological Inorganic Chemistry, 16, 1067-1078.
[8] Eide, D.J. (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta, 1763, 711-722.
[9] Rogers, E.E, Eide, D.J. and Guerinot, M.L. (2000) Altered selectivity in an Arabidopsis metal transporter. Proceedings of the National Academy of Sciences of the United States of America, 97, 12356-12360.
[10] Huang, L. and Tepaamorndech, S. (2013) The SLC30 family of zinc transporters—A review of current understanding of their biological and pathophysiological roles. Molecular Aspects of Medicine, 34, 548-560.
[11] Lichten, L.A. and Cousins, R.J. (2009) Mammalian zinc transporters: Nutritional and physiologic regulation. Annual Review of Nutrition, 29, 153-176.
[12] Küry, S., Dréno, B., Bézieau, S., Giraudet, S., Kharfi, M., Kamoun, R. and Moisan, J.-P. (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nature Genetics, 31, 239-240.
[13] Giunta, C., Elçioglu, N.H., Albrecht, B., Eich, G., Chambaz, C., Janecke, A.R., et al. (2008) Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome—An autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. American Journal of Human Genetics, 82, 1290-1305.
[14] Henshall, S.M., Afar, D.E.H., Rasiah, K.K., Horvath, L.G., Gish, K., Caras, I., et al. (2003) Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene, 22, 6005-6012.
[15] Lyubartseva, G., Smith, J.L., Markesbery, W.R. and Lovell, M.A. (2010) Alterations of zinc transporter proteins ZnT-1, ZnT-4 and ZnT-6 in preclinical Alzheimer’s disease brain. Brain Pathology, 20, 343-350.
[16] Maret, W. (2000) The function of zinc metallothionein: A link between cellular zinc and redox state. The Journal of Nutrition, 130, 1455-1458.
[17] Romero-Isart, N. and Vašák, M. (2002) Advances in the structure and chemistry of metallothioneins. Biochemistry, 88, 388-396.
[18] Vašák, M. and Romero-Isart, N. (2006). Metallothioneins. Encyclopedia of Inorganic Chemistry.
[19] Zheng, J., Zhang, Y., Xu, W., Luo, Y., Hao, J., Shen, X.L., Yang, X., Li, X. and Huang, K. (2012) Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A. Toxicology and Applied Pharmacology, 268, 123-131.
[20] Scheiber, I.F., Schmidt, M.M. and Dringen, R. (2010) Zinc prevents the copper-induced damage of cultured astrocytes. Neurochemistry International, 57, 314-322.
[21] Suntres, Z.E. and Lui, E.M.K. (2006) Antioxidant effect of zinc and zinc-metallothionein in the acute cytotoxicity of hydrogen peroxide in Ehrlich ascites tumour cells. Chemico-Biological Interactions, 162, 11-23.
[22] Szuster-Ciesielska, A., Plewka, K., Daniluk, J. and Kandefer-Szerszeń, M. (2008) Zinc inhibits etha-nol-induced HepG2 cell apoptosis. Toxicology and Applied Pharmacology, 229, 1-9.
[23] 褚启龙, 杨克敌, 王爱国 (2003) 氧化应激与细胞凋亡关系的研究进展. 卫生研究, 23, 276-278.
[24] Taylor, C.G., Bettger, W.J. and Bray, T.M. (1988) Effect of dietary zinc or copper deficiency on the primary free radical defense system in rats. Journal of Nutrition, 118, 613-621.
[25] Yousef, M.I., El-Hendy, H.A., El-Demerdash, F.M. and Elagamy, E.I. ( 2002) Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals, lipids and protein electrophoretic behavior in growing rats. Toxicology, 175, 223-234.
[26] Powell, S.R. (2000) The antioxidant properties of zinc. The Journal of Nutrition, 130, 1447-1454.
[27] Cao, G. and Chen, J. (1991) Effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase in trained mice. Archives of Biochemistry and Biophysics, 291, 147-153.
[28] 张德莉, 朱圣姬, 罗光富, 黄应平, 袁丁, 刘立明 (2004) 自由基与DNA氧化损伤的研究进展. 三峡大学学报(自然科学版), 6, 563-567.
[29] 陈思明 (2013) Sp1锌指蛋白与铂类抗肿瘤药物的相互作用研究. 中国科学技术大学, 合肥.
[30] Meng, X., Thibodeau-Beganny, S., Jiang, T., Joung, J.K. and Wolfe, S.A. (2007) Profiling the DNA-binding specifcities of enginneered Cys2His2 zinc finger domains using a rapid cell-based method. Nucleic Acids Research, 35, e81.
[31] 赵楠, 赵飞, 李玉花 (2009) 锌指蛋白结构及功能研究进展. 生物技术通讯, 1, 131-134.
[32] Faure, P., Bouvard, S., Roucard, C., Favier, A. and Halimi, S. (2005) Zinc protects HeLa-tat cells against free radical cytotoxicity induced by glucose. Journal of Trace Elements in Medicine and Biology, 18, 269-276.
[33] Bedwal, R.S. and Bahuguna, A. (1994) Zinc, copper and selenium in reproduction. Experientia, 50, 626-640.
[34] Pavletich, N.P., Chambers, K.A. and Pabo, C.O. (1993) The DNA-binding domain of p53 contains the four conserved regions and the major mutation hot spots. Genes & Development, 7, 2556-2564.
[35] Ames, B.N. (2001) DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutation Research, 475, 7-20.
[36] Ho, E., Courtemanche, C. and Ames, B.N. (2003) Zinc deficiency induces oxidative DNA damage and in-creases p53 expression in human lung fibroblasts. Journal of Nutrition, 133, 2543-2548.
[37] Ho, E. and Ames, B.N. (2002) Low intracellular zinc induces oxidative DNA damage, disrupts p53, NFkappaB and AP1 binding and affects DNA repair in a rat glioma cell line. Proceedings of the National Academy of Sciences of the United States of America, 99, 16770-16775.
[38] Weisenberger, D.J. (2014) Characterizing DNA methylation alterations from the cancer genome atlas. Journal of Clinical Investigation, 124, 17-23.
[39] Wallwork, J.C. and Duerre, J.A. (1985) Effect of zinc deficiency on methionine metabolism, methylation reactions and protein synthesis in isolated perfused rat liver. Journal of Nutrition, 115, 252-262.
[40] Duerre, J.A. and Wallwork, J.C. (1986) Methionine metabolism in isolated perfused livers from rats fed on zinc-deficient and restricted diets. British Journal of Nutrition, 56, 395-405.
[41] Ho, E. (2004) Zinc deficiency, DNA damage and cancer risk. Journal of Nutritional Biochemistry, 15, 572-578.
[42] Dewson, G. and Kluck, R.M. (2009) Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. Journal of Cell Science, 122, 2801-2808.
[43] Sheridan, C., Delivani, P., Cullen, S.P. and Martin, S.J. (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Molecular Cell, 31, 570-585.
[44] Slee, E.A., Harte, M.T., Kluck, R.M., Wolf, B.B., Casiano, C.A., Newmeyer, D.D., et al. (1999) Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. Journal of Cell Biology, 144, 281-292.
[45] Twiddy, D., Brown, D.G., Adrain, C., Jukes, R., Martin, S.J., Cohen, G.M., et al. (2004) Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex. Journal of Biological Chemistry, 279, 19665-19682.
[46] Guo, B., Yang, M., Liang, D., Yang, L., Cao, J. and Zhang, L. (2012) Cell apoptosis induced by zinc deficiency in osteoblastic MC3T3-E1 cells via a mitochondrial-mediated pathway. Molecular and Cellular Biochemistry, 361, 209-216.
[47] Siebenlist, U., Franzoso, G. and Brown, K. (1994) Structure, regulation and function of NF-kappa B. Annual Review of Cell Biology, 10, 405-455.
[48] Shaulian, E. and Karin, M. (2001) AP-1 in cell proliferation and survival. Oncogene, 20, 2390-2400.
[49] 高建伟, 王林枫, 杨改青, 严平, 贺翠婷 (2010) 锌的消化吸收机制研究进展. 安徽农业科学, 1, 33-34.
[50] Sahin, K., Smith, M.O., Onderci, M., Sahin, N., Gursu, M.F. and Kucuk, O. (2005) Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poultry Science, 84, 882-887.
[51] 胡亮, 乐国伟, 王立宽, 范查海, 施用晖 (2007) 不同氨基酸螯合锌对小鼠抗氧化能力的影响. 食品科学, 11, 541-544.
[52] 邵凯, 徐桂梅, 荣威恒, 包赛娜, 张海鹰, 珊丹, 于朝晖, 王洪荣 (1996) 不同锌源对绵羊免疫机能的影响. 动物营养学报, 4, 51-55.
[53] Sapota, A., Daragó, A., Skrzypińska-Gawrysiak, M., Nasiadek, M., Klimczak, M. and Kilanowicz, A. (2014) The bioavailability of different zinc compounds used as human dietary supplements in rat prostate: A comparative study. Biometals, 27, 495-505.
[54] 虞泽鹏, 乐国伟, 施用晖 (2005) 两种锌源对体外培养胸腺细胞Bc-l 2、Bax、Caspase-3 mRNA表达的影响. 畜牧兽医学报, 36, 328-332.
[55] Yu, Z.-P., Le, G.-W., Huang, H.-Y., Wei, Y.-Y. and Shi, Y.-H. (2005) Effect of different zinc sources and levels on inhibition of the apoptosis induced by glucocorticoid of thymocytes in Vitro. Biological Trace Element Research, 105, 215-227.
[56] Prasad, A.S. (2009) Zinc: Role in immunity, oxidative stress and chronic inflammation. Current Opinion in Clinical Nutrition & Metabolic Care, 12, 646-652.