清洁煤与能源  >> Vol. 2 No. 4 (December 2014)

浸渍顺序对CuFe基低碳醇合成催化剂性能的影响
Effect of Impregnation Sequence on the Performances of CuFe-Based Catalysts for Mixed Alcohol Synthesis

DOI: 10.12677/CCE.2014.24009, PDF, , 下载: 1,889  浏览: 7,673  国家科技经费支持

作者: 张 伟, 金杨福, 宁文生:浙江工业大学化学工程学院,杭州

关键词: CuFe催化剂浸渍顺序CO加氢反应低碳醇合成CuFe Catalyst Impregnation Sequence CO Hydrogenation Mixed Alcohol Synthesis

摘要: 采用SiO2作为载体,利用浸渍法负载Cu、Zn和Fe,通过不同的浸渍顺序获得多种CuFe基催化剂,并用固定床反应器测试了这些催化剂的CO加氢反应活性,Cu、Zn和Fe同时浸渍的催化剂活性最高,而分步浸渍导致活性下降。XRD结果说明这是由于共浸渍使得CuFe两种组分相互均匀分布,形成的活性中心最多,反应性能最高。
Abstract: Adopting SiO2 as carrier, CuFe-based catalysts were prepared through different impregnation se-quences which were impregnated by Cu, Zn and Fe. The activity of CO hydrogenation of these cat-alysts was tested in fixed-bed reactor. The catalyst impregnated by Cu, Zn and Fe simultaneously has the highest activity, but consecutive impregnation leads to the decrease of activity. The results showed that the co-impregnation makes Cu and Fe distribute uniformly in the catalyst, which forms the most active centers, with the highest reactive performance.

文章引用: 张伟, 金杨福, 宁文生. 浸渍顺序对CuFe基低碳醇合成催化剂性能的影响[J]. 清洁煤与能源, 2014, 2(4): 49-54. http://dx.doi.org/10.12677/CCE.2014.24009

参考文献

[1] 吴秀章 (2008) 中国煤炭转化的发展与机遇. 洁净煤技术, 1, 5-8.
[2] 张继光 (2004) 催化剂制备过程技术. 中国石化出版社, 北京.
[3] 李晨, 应卫勇, 房鼎业 (2008) 浸渍次序对钴基催化剂F-T合成催化性能的影响. 河南化工, 2, 16-19.
[4] Deng, S., Chu, W., Xu, H., Shi, L. and Huang, L. (2008) Effects of impregnation sequence on the microstructure and performances of Cu-Co based catalysts for the synthesis of higher alcohols. Journal of Natural Gas Chemistry, 17, 369-373.
[5] 陈维苗, 丁云杰, 江大好, 焦桂萍, 朱何俊, 潘振栋, 罗洪原 (2007) 改善Rh基催化剂上CO加氢生成C2含氧化物性能的本质及途径. 催化学报, 11, 999-1004.
[6] Fang, K., Li, D., Lin, M., Xiang, M., Wei, W. and Sun, Y. (2009) A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catalysis Today, 147, 133-138.
[7] Yang, X., Zhu, X., Hou, R., Zhou, L. and Su, Y. (2011) The promo-tion effects of Pd on Fe-Cu-Co based catalyst for higher alcohols synthesis. Fuel Processing Technology, 92, 1876-1880.
[8] Lu, Y., Yu, F., Hu, J. and Liu, J. (2012) Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst. Applied Catalysis A: General, 429, 48-58.
[9] 刘建国, 定明月, 王铁军, 马隆龙 (2012) Cu-Fe基双孔载体催化剂结构和低碳醇合成反应性能. 物理化学学报, 8, 026.
[10] 宁文生, 张伟, 金杨福, 陈枫, 赵原, 张为 (2013) 用于低碳混合醇合成的 Fe/CuZnSi催化剂研究. 现代化工, 10, 66-69.
[11] Laven, J. and Stein, H.N. (2001) The electroviscous behavior of aqueous dispersions of amorphous silica (Ludox). Journal of Colloid and Interface Science, 238, 8-15.
[12] Han, J. and Kumacheva, E. (2001) Monodispersed silica-titanyl sulfate microspheres. Langmuir, 17, 7912-7917.
[13] Sonnefeld, J., Löbbus, M. and Vogelsberger, W. (2001) Determination of electric double layer parameters for spherical silica particles under application of the triple layer model using surface charge density data and results of electrokinetic sonic amplitude measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 195, 215-225.
[14] Van den Berg, F.R., Crajé, M.W.J., Kooyman, P.J., Van der Kraan, A.M. and Geus, J.W. (2002) Synthesis of highly dispersed zirconia-supported iron-based catalysts for Fischer-Tropsch synthesis. Applied Catalysis A: General, 235, 217-224.
[15] Niemantsverdriet, J.W. and Van der Kraan, A.M. (1981) On the time-dependent behavior of iron catalysts in Fischer- Tropsch synthesis. Journal of Catalysis, 72, 385-388.
[16] Ning, W., Yang, X. and Yamada, M. (2012) Influence of palladium on the hydrocarbon distribution of Fischer-Tropsch reaction over precipitated iron catalyst. Current Catalysis, 1, 88-92.
[17] Ning, W., Yang, S., Chen, H. and Yamada, M. (2013) Influences of K and Cu on coprecipitated FeZn catalysts for Fischer-Tropsch reaction. Catalysis Communications, 39, 74-77.