霍尔芯片关键技术及发展趋势分析
Analysis of the Key Technology and Developing Trend of the Hall Chip
DOI: 10.12677/OJCS.2014.34011, PDF, HTML, 下载: 3,138  浏览: 10,362  国家科技经费支持
作者: 徐文毫, 郭训华, 王国兴:上海交通大学微纳电子学系,上海;陈金玲:威胜集团有限公司,长沙
关键词: 霍尔效应温度漂移失调电压发展趋势Hall Effect Temperature Drift Offset Voltage Developing Trend
摘要: 本文首先概述了霍尔芯片的分类、应用和市场前景。然后,分析了霍尔芯片的设计难点,并从霍尔盘和信号处理电路两个方面阐述了解决霍尔芯片温度漂移和失调电压的方案,同时也对不同解决方案的进行了对比。基于霍尔芯片的设计难点和应用,总结出霍尔芯片呈现高集成度、低温度性漂移、高灵敏度、低失调电压、新型的霍尔元件结构、微型化等发展趋势。
Abstract: The classification, application and market prospect of the Hall chip are introduced in this paper. The design difficulties are analyzed. The paper presents how to solve the temperature drift and offset voltage of the Hall chips in two aspects of Hall plates and signal processing circuits. Meanwhile, different solutions are also compared. Based on the design difficulties and the application, the developing trends such as high degree of integration, low temperature drift, high sensitivity, low offset voltage, new Hall plate structure and miniaturization are summarized.
文章引用:徐文毫, 郭训华, 王国兴, 陈金玲. 霍尔芯片关键技术及发展趋势分析[J]. 电路与系统, 2014, 3(4): 65-72. http://dx.doi.org/10.12677/OJCS.2014.34011

参考文献

[1] 秦波, 孙传友 (2007) 霍尔式数字电度表设计. 科技资讯, 2, 11.
[2] Andrea, P.A. (2013) Fully integrated calibra-tion for high-performance Hall Sensor Microsystems. Ph.D. Dissertation, EPFL, Lausanne.
[3] Popovic, R.S. (2004) Hall effect devices. Second Edition, Institute of Physics Publishing, London.
[4] Pastre, M. Kayal, M. and Blanchard, H. (2007) A Hall sensor analog front end for current measurement with continuous gain calibration. IEEE Sensor Journal, 7, 860-867.
[5] Simon, P., Vries, P. and Middelhoek, S. (1996) Autocalibration of silicon Hall devices. Sensors and Actuators A: Physical, 52, 203-207.
[6] Extance, P. and Pitt, G.D. (1985) GaAs magnetic field sensors.Transducers’85. 1985 International Conference on Solid-State Sensors and Actuators, New York, 304-307.
[7] 涂有瑞 (1996) 磁敏传感器产业的现状和发展趋势. 电子科技学报, 10, 28-33.
[8] Randjelovic, Z.B., Kayal, M., Popovic, R. and Blanchard, H. (2002) Highly sensitive Hall Magnetic Sensors Microsystem in CMOS Technology. IEEE Journal of Solid-State Circuits, 37, 151-159.
[9] Paun, M.A. (2013) Hall cells offset analysis and modeling approaches. Ph.D. Dissertation, EPFL, Lausanne.
[10] Ramsden, E. (2006) Hall effect sensors—Theory and applications. 2nd Edition, Elsevier, Amsterdam.
[11] Blanchard, H. (1999) Hall sensors with integrated magnetic flux concentrators. Ph.D. Dissertation, EPFL, Lausanne.
[12] Ausserlechner, U., Motz, M. and Holliber, M. (2007) Compensation of the piezo-Hall effect in integrated Hall sensors on (100)-Si. IEEE Sensors Journal, 7, 1475-1482.
[13] Manic, D., Friedrich, A., Haddab, Y. and Popovic, R. (1997) Influence of assembling procedure on IC parameters. Proceedings of 21st International Conference on Microelectronics, 2, 637-640.
[14] Randjelovic, Z. (2000) Low-power high sensitivity integrated Hall magnetic sensor microsystems. Hartung-Gorre, Konstanz.
[15] LEM (2010) Isolated current and voltage transducers. 3rd Edition, LEM Corporate Communications, Geneva.
[16] Pastre, M. (2005) Methodology for the digital calibration of analog circuits and system-application to a Hall Sensor Microsystem. Ph.D. Dissertation, EPFL, Lausanne.
[17] Manic, D., Petr, J. and Popovic, R.S. (2000) Short and long-term stability problems of Hall plates in plastic packages. Proceedings of the 38th Annual 2000 IEEE International Reliability Physics Symposium, San Jose, 10-13 April 2000, 225-230.
[18] Aziz, P.V. and Sorensen, H.V. (1996) An overview of sigma-delta converters. Signal Processing Magazine, IEEE, 13, 61-84.
[19] 韩丹丹 (2009) 应用于G.712语音编码和地震信号检测的∑Δ调制器. 硕士论文, 清华大学, 北京.
[20] Popovic, R.S. (1984) The vertical Hall-effect device. IEEE Electron Device Len, EDL-5(1984)3578.