HJMCe  >> Vol. 3 No. 3 (August 2015)

    The Development of Anti-Tumor Activity of Sulfonylurea Compounds

  • 全文下载: PDF(423KB) HTML   XML   PP.29-37   DOI: 10.12677/HJMCe.2015.33005  
  • 下载量: 1,872  浏览量: 8,638  


田 静,钱 宇,常霄巍,巴俊杰:内蒙古医科大学药学院,内蒙古 呼和浩特

磺酰脲抗肿瘤研究进展Sulfonylureas Anti-Tumor Development



While the hypoglycemic and herbicidal activity of sulfonylurea is investigated, its anti-tumor ac-tivity has attracted special attention. Sulfonylurea compounds may be used in the medical field as a new class of promising anticancer drugs. In order to provide a reference for the application and development of anti-tumor sulfonylurea compounds, we summarize the domestic and foreign research progress of antitumor activity of the compounds.

田静, 钱宇, 常霄巍, 巴俊杰. 磺酰脲类化合物抗肿瘤活性的研究进展[J]. 药物化学, 2015, 3(3): 29-37. http://dx.doi.org/10.12677/HJMCe.2015.33005


[1] Sherif, A. and Rostom, F. (2006) Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]-pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea)pharmacophores, and some derived thiazole ring systems. Bioorganic & Medicinal Chemistry, 14, 6475-6485.
[2] 方家椿 (2006) 分子靶点和分子靶向抗肿瘤药研究进展. 北京大学报, 38, 575-578.
[3] Grindey, G.B. (1988) Identification of diarylsulfonylureas as novel anticancer drugs. Proceedings of the American Association for Cancer Research, 29, 535-536.
[4] Charles, W., Taylor, D., Alberts, S. and Peng, Y.-M. (1992) Antitumor activity and clinical pharmacology of sulofenur in ovarian cancer. Journal of the National Cancer Institute, 84, 1798-1802.
[5] Houghton, P., Sosinski, J., Thakar, J. and Houghton, J. (1991) Diarylsulfonylureas: New anticancer agents with novel activities, toxicities and mechanism of action. Proceedings of the 3rd International Congress on Neo-Adjuvant Chemotherapy, 405-408.
[6] Houghton, P.J., Houghton, J.A., Myers, L. and Cheshire, P. (1989) Evaluation of N-(5-indanylsulfonyl)-N'-(4-chloro- phenyl)-urea against xenografts of pediatric rhabdomyosarcoma. Cancer Chemotherapy and Pharmacology, 25, 84-88.
[7] Howbert, J.J., Grossman, C.S., Crowell, T.A., Harper, B.J.R.W. and Grindey, G.B. (1990) Novel agents effective against solid tumors: The diarylsulfonylureas. Synthesis, actrities, and analysis of quantitative structure-activity relationships. Journal of Medicinal Chemistry, 33, 2393-2407.
[8] Ardehali, H. and O’Rourke, B. (2005) Mitochondrial K(ATP) channels in cell survival and death. Journal of Molecular and Cellular Cardiology, 39, 7-16.
[9] Qian, X., Li, J., Ding, J., et al. (2008) Glibenclamide exerts an antitumor activity through reactive oxygen species-c-jun NH2-terminal kinase pathway in human gastric cancer cell line MGC-803. Biochemical Pharmacology, 76, 1705-1715.
[10] Suzuki, Y., Inoue, T., Murai, M., et al. (2012) Depolarization potentiates TRAIL-induced apoptosis in human melanoma cells: Role for ATP-sensitive K+ channels and endoplasmic reticulum stress. International Journal of Oncology, 41, 465-475.
[11] Mastrolorenzo, A., Scozzafava, A. and Supuran, C.T. (2000) 4-Toluenesulfonylureido derivatives of amines, amino acids and dipeptides: A novel class of potential antitumor agents. European Journal of Pharmaceutical Sciences, 11, 325-332.
[12] Hwang, H.S. and Moon, E.Y. (1999) Characterization of the anticancer activity of DW2282, a new anticancer agent. Anticancer Research, 19, 5087-5093.
[13] Kim, S., Park, J.H., Koo, S.-Y., Kim, J.I., Kim, M.-H., Kim, J.E., et al. (2004) Novel diarylsulfonylurea derivatives as potent antimitotic agents. Bioorganic & Medicinal Chemistry Letters, 14, 6075-6078.
[14] Kim, D.-M., Won, M., Chung, C.-S., Kim, S., Yim, H.J., Jung, S.-H. and Jeong, S.W. (2010) JNK-mediated transcriptional upregulation of RhoB is critical for apoptosis of HCT-116 colon cancer cells by a novel diarylsulfonylurea derivative. Apoptosis, 15, 1540-1548.
[15] Morré, D.J., Wu, L.Y. and Morré, D.M. (1995) The antitumor sulfonylurea N-(4-methylphenylsulfonyl)-N’-(4- chlorophenyl)urea (LY181984) inhibits NADH oxidase activity of HeLa plasma membranes. Biochimica et Biophysica Acta, 1240, 11-17.
[16] Morré, D.J. and Reust, T. (1997) A circulating form of NADH oxidase activity responsive to the antitumor sulfonylurea N-4-(methylphenylsulfonyl)-N’-(4-chlorophenyl)urea (LY181984) specific to sera from cancer patients. Journal of Bioenergetics and Biomembranes, 29, 281-289.
[17] Morré, D.J., Wu, L.-Y. and Morre, D.M. (1998) Response of a cell-surface NADH oxidase to the antitumor sulfonylurea N-(4-methylphenylsulfonyl)-N’-(4-chlorophenylurea) (LY181984) modulated by redox. Biochimica et Biophysica Acta, 1369, 185-192.
[18] Morré, D.J., Jacobs, E. and Sweeting, M. (1997) A protein disulfide-thiol interchange activity of HeLa plasma membranes inhibited by the antitumor sulfonylurea N-(4-methylphenylsulfonyl)-N’-4-chlorophenyl)urea (LY181984). Biochimica et Biophysica Acta, 1325, 117-125.
[19] Kim, C., MacKellar, W.C., Cho, N.M., Byrn, S.R. and Morré, D.J. (1997) Impermeant antitumor sulfonylurea conjugates that inhibit plasma membrane NADH oxidase and growth of HeLa cells in culture. Identification of binding proteins from sera of cancer patients. Biochimica et Biophysica Acta, 1324, 171-181.
[20] Houghton, P.J. and Houghton, J.A. (1996) Antitumor diarylsulfonylureas: Novel agents with unfulfilled promise. Investigational New Drugs, 14, 271-280.
[21] Ehlhardt, W.J., Woodland, J.M., Toth, J.E., Ray, J.E. and Martin, D.L. (1997) Disposition and metabolism of the sulfonylurea oncolytic agent LY295501 in mouse, rat, and monkey. Drug Metabolism and Disposition, 25, 701-708.
[22] Gil, M.J., Mañú, M.A., Arteaga, C., Migliaccio, M., Encío, I., González, A. and Martínez-Merino, V. (1999) Synthesis and cytotoxic activity of N-(2-pyridylsulfenyl)urea derivatives. A new class of potential antineoplastic agents. Bioorganic & Medicinal Chemistry Letters, 9, 2321-2324.
[23] Lee, C.W., Hong, D.H., Han, S.B., Jung, S.H., Kim, H.C., Fine, R.L., Lee, S.H. and Kim, H.M. (2002) A novel stereo- selective sulfonylurea, 1-[1-(4-aminobenzoyl)-2,3-dihydro-1H-indol-6-sulfonyl]-4-phenyl-imidazolidin-2-one, has antitumor efficacy in vitro and in vivo tumor models. Biochemical Pharmacology, 64, 473-480.
[24] El-Deeb, I.M., Bayoumi, S.M., El-Sherbeny, M.A. and Abdel-Aziz, A.A.M. (2010) Synthesis and antitumor evaluation of novel cyclic arylsulfonylureas: ADME-T and pharmacophore prediction. European Journal of Medicinal Chemistry, 45, 2516-2530.
[25] Sharma, V.K., Lee, K.-C. and Venkateswararao, E. (2011) Structure-activity relationship study of arylsulfonylimidazolidinones as anticancer agents. Bioorganic & Medicinal Chemistry Letters, 21, 6829-6832.
[26] Rathore, P., Yaseen, S., Ovais, S., Bashir, R., Yaseen, R., Hameed, A.D., et al. (2014) Synthesis and evaluation of some new pyrazoline substituted benzenesulfonylureas as potential antiproliferative agents. Bioorganic & Medicinal Chemistry Letters, 24, 1685-1691.
[27] Kharbanda, C., Alam, M.S., Hamid, H., Javed, K., Shafi, S., Ali, Y., et al. (2014) Novel benzenesulfonylureas containing thiophenylpyrazoline moiety as potential antidiabetic and anticancer agents. Bioorganic & Medicinal Chemistry Letters, 24, 5298-5303.
[28] 贾心语, 苗娜, 马丽娟, 钱宇 (2013) N’-取代苯基-2-苯并噻唑磺酰脲类化合物的合成. 中国药物化学杂志, 6, 467-472.
[29] 钱宇, 田静, 常霄巍, 巴俊杰 (2015) 新型N-取代苯基-9-烷基-3-咔唑磺酰脲类化合物的合成及其抗肿瘤活性. 合成化学, 5, 369-375.
[30] 杨眉, 李钰, 徐冬燕, 侯长军, 法焕宝 (2014) 靶向型药物载体在抗肿瘤治疗中的研究进展. 材料导报, 3, 60-64.