α-螺旋型寡聚L-乳酸的计算研究
Computational Study on the L-Lactic Acid Oligomers in α-Helix
DOI: 10.12677/JAPC.2015.43012, PDF, HTML, XML, 下载: 2,574  浏览: 10,196  科研立项经费支持
作者: 张敏敏, 杭 睿, 曾狄勤, 郑 武, 薛雅楠, 何碧如:温州医科大学信息与工程学院,浙江 温州;金 芩, 王朝杰:温州医科大学药学院,浙江 温州
关键词: 寡聚L-乳酸CAM-B3LYP聚合度氢键PLLA CAM-B3LYP Degree of Polymerization Hydrogen Bond
摘要: 在CAM-B3LYP/6-311+G*水平,对气相中α-螺旋型寡聚L-乳酸的几何结构、热力学性质和谱学性质进行了详细的计算研究,并根据概念密度泛函理论对各稳定结构的化学性质进行考察。链长与聚合度满足拟合方程:Y=0.37087 × e(n/2.88711) +8.61611,R2=0.90099。寡聚L-乳酸通过三种氢键形成螺旋状寡聚物。热力学数据显示,熵值与聚合度呈较好线性相关,其拟合方程为 Y=27.75·n+88.711,R2=0.9964。计算得到的各结构中C=O、COO-H和O-H键的伸缩振动频率与实验值相比,发生蓝移。PLLA7的亲电指数最小,酸性最强。
Abstract: The geometrical structures, thermodynamics, spectral property and the conceptual density func-tional analysis of L-lactic acid oligomers in α-helix were calculated at CAM-B3LYP/6-311+G* level in gas phase. The chain length of PLLAn and the degree of polymerization obey the equation: Y=0.37087 × e(n/2.88711) +8.61611,R2=0.90099 . The results showed that three types of intramolecular hydrogen bonds were beneficial to form the L-lactic acid oligomers in α-helix. The values of ther-modynamics showed linear correlation of entropy (S) of PLLAn and the degree of polymerization: Y=27.75·n+88.711,R2=0.9964 . Compared with the experimental values, the stretching vibrational frequencies of the C=O, COO-H and O-H bonds exhibit a general blue shift. Among all of the structures, the electrophilicity indexes of PLLA7 are the smallest, but its acidity is the strongest.
文章引用:张敏敏, 金芩, 杭睿, 曾狄勤, 郑武, 薛雅楠, 何碧如, 王朝杰. α-螺旋型寡聚L-乳酸的计算研究[J]. 物理化学进展, 2015, 4(3): 103-110. http://dx.doi.org/10.12677/JAPC.2015.43012

参考文献

[1] Bishai, M., De, S., Adhikari, B. and Banerjee, R. (2014) A comprehensive study on enhanced characteristics of modified polylactic acid based versatile biopolymer. European Polymer Journal, 54, 52-61.
http://dx.doi.org/10.1016/j.eurpolymj.2014.01.027
[2] Munteanu, B.S., Aytac, Z., Pricope, G.M., Uyar, T. and Vasile, C. (2014) Polylactic acid (PLA)/silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity. Journal of Nanoparticle Research, 16, 2643.
http://dx.doi.org/10.1007/s11051-014-2643-4
[3] 周光耀 (2015) 氢键的量子化学研究(一). 物理化学进展, 4, 84-101.
[4] Dong, Y., Ghataura, A., Takagi, H., Haroosh, H.J., Nakagaito, A.N. and Lau, K.T. (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites: Part A, 63, 76-84.
http://dx.doi.org/10.1016/j.compositesa.2014.04.003
[5] Winter, J.D., Lemaur, V., Marsal, P., Coulembier, O., Cornil, J., Dubois, P. and Gerbauxa, P. (2010) Mechanistic study of the collision-induced dissociation of sodium-cationized polylactide oligomers: A joint experimental and theoretical investigation. Journal of the American Society for Mass Spectrometry, 21, 1159-1168.
http://dx.doi.org/10.1016/j.jasms.2010.03.026
[6] 翁云宣 (2007) 聚乳酸合成、生产、加工及应用研究综述. 塑料工业, 35, 69-73.
[7] 战玥 (2013) 聚乳酸(PLA)生物循环降解的研究. 硕士论文, 东北师范大学, 长春.
[8] 赵申 (2005) 聚乳酸多嵌段共聚物的合成及表征. 硕士论文, 浙江大学, 杭州.
[9] Jacobs, T., Declercq, H., Geyter, N.D., Cornelissen, R., Dubruel, P., Leys, C., Beaurain, A., Payen, E. and Morent, R. (2013) Plasma surface modification of polylactic acid to promote interaction with fibroblasts. Journal of Materials Science-Materials in Me-dicinem, 24, 469-478.
http://dx.doi.org/10.1007/s10856-012-4807-z
[10] Gao, Q., Lan, P., Shao, H. and Hu, X.C. (2002) Direct synthesis with melt polycondensation and microstructure analysis of poly(L-lactic acid-co-glycolic acid). Polymer Journal, 34, 786-793.
http://dx.doi.org/10.1295/polymj.34.786
[11] Rychlý, J., Rychlá, L., Stloukal, P., Koutný, M., Pekařová, S., Verney, V. and Fiedlerová, A. (2013) UV initiated oxidation and chemiluminescence from aromatic-aliphatic co-polyesters and polylactic acid. Polymer Degradation and Stability, 98, 2556-2563.
http://dx.doi.org/10.1016/j.polymdegradstab.2013.09.016
[12] Shinzawa, H., Murakami, T.N., Nishida, M., Ka-nematsu, W. and Noda, I. (2014) Near-infrared (NIR) imaging analysis of polylactic acid (PLA) nanocomposite by multiple-perturbation two-dimensional (2D) correlation spectroscopy. Journal of Molecular Structure, 1069, 171-175.
http://dx.doi.org/10.1016/j.molstruc.2014.03.014
[13] 易隽 (2008) 聚乳酸降解的计算机模拟. 硕士论文, 浙江大学, 杭州.
[14] 吴雁, 吴若峰, 陶燕华, 何佩华 (2007) L-丙交酯和D,L-丙交酯共聚物立体化学构型的计算机模拟. 计算机与应用化学, 5, 659-664.
[15] Lin, T.T., Liu, X.Y. and He, C.B. (2012) Calculation of infrared/raman spectra and dielectric properties of various crystalline poly(lactic acid)s by density functional perturbation theory (DFPT) method. The Journal of Physical Chemistry B, 116, 1524-1535.
http://dx.doi.org/10.1021/jp210123q
[16] Lin, T.T., Liu, X.Y. and He, C.B. (2010) A DFT study on poly(lactic acid) polymorphs. Polymer, 51, 2779-2785.
http://dx.doi.org/10.1016/j.polymer.2010.03.062
[17] Alparone, A. (2013) Response electric properties of α-helix polyglycines: A CAM-B3LYP DFT investigation. Chemical Physics Letters, 563, 88-92.
http://dx.doi.org/10.1016/j.cplett.2013.01.062
[18] Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al. (2010) Gaussian 09, Revision B.01. Gaussian Inc., Wallingford.
[19] Irsai, I., Majdik, C., Lupan, A. and Silaghi-Dumitrescu, R. (2012) Secondary structure elements in polylactic acid models. Journal of Mathematical Chemistry, 50, 703-733.
http://dx.doi.org/10.1007/s10910-011-9919-z
[20] Aparicio, S. (2007) Computational study on the properties and structure of methyl lactate. The Journal of Physical Chemistry A, 111, 4671-4683.
http://dx.doi.org/10.1021/jp070841t
[21] 高勤卫, 李明子, 董晓 (2008) D,L-乳酸的立构选择性聚合. 南京林业大学学报(自然科学版), 3, 43-47.