SEA  >> Vol. 4 No. 5 (October 2015)

    基于社交网络的上下文感知推荐算法
    Context-Aware Recommendation Algorithm Based on Social Network

  • 全文下载: PDF(1253KB) HTML   XML   PP.101-113   DOI: 10.12677/SEA.2015.45014  
  • 下载量: 1,522  浏览量: 4,558   科研立项经费支持

作者:  

陈 磊,李 贵,李征宇,韩子扬,孙 平:沈阳建筑大学信息与控制工程学院,辽宁 沈阳

关键词:
推荐系统上下文感知社交网络矩阵分解Recommendation System Context-Aware Social Network Matrix Factorization

摘要:

上下文和社交网络信息对于构建精确的推荐系统是很有价值的。然而,传统的推荐系统还不能有效结合不同类型的上下文信息及社交网络信息来进一步提高推荐质量。为此,提出基于社交网络的上下文感知推荐算法SCRA (Social Network Based Context-Aware Recommendation Algorithm),对于不同类型的上下文,通过引入随机决策树的方式分割初始用户项目评分矩阵,在树的叶子结点应用矩阵分解,并结合社交网络信息引入了包含上下文信息的皮尔森相关系数来度量用户相似度,通过求解目标函数来预测潜在用户对项目的评分。在真实数据集上的实验表明该算法较传统推荐算法有着更高的准确率。

Context and social network information is very valuable for building accurate recommendation system. However, traditional recommendation systems could not combine different types of such information effectively to further improve the quality of recommendation. Therefore, we propose the context-aware recommendation algorithm based on social network SCRA (Social Network Based Context-Aware Recommendation Algorithm). For different types of context, we partition the rating matrix of initial user item by introducing random decision tree. In the leaf node of the tree, matrix factorization is used. Besides, we incorporate social network information by introducing Pearson Correlation Coefficient which contains context information to measure the similarity of users. To predict the rating of users for an item, we solve the objective function. Real datasets based experiments show that SCRA is better than the traditional recommendation algorithm in terms of precision.

文章引用:
陈磊, 李贵, 李征宇, 韩子扬, 孙平. 基于社交网络的上下文感知推荐算法[J]. 软件工程与应用, 2015, 4(5): 101-113. http://dx.doi.org/10.12677/SEA.2015.45014

参考文献

[1] Zhong, E.H., Fan, W. and Yang, Q. (2012) Contextual collaborative filtering via hierarchical matrix factorization. Proceedings of the SIAM International Conference on Data Mining, Anaheim, 26-28 April 2012, 744-755.
http://dx.doi.org/10.1137/1.9781611972825.64
[2] Liu, F.K. and Lee, H.J. (2010) Use of social network information to enhance collaborative filtering performance. Expert Systems with Applications, 37, 4772-4778.
http://dx.doi.org/10.1016/j.eswa.2009.12.061
[3] Ma, H., Zhou, D., Liu, C., Lyu, M.R. and King, I. (2011) Recommender systems with social regularization. Proceedings of the 4th ACM International Conference on Web Search and Data Mining, Hong Kong, 9-12 February 2011, 287- 296.
[4] Jiang, M., Cui, P., Liu, R., Yang, Q., Wang, F., Zhu, W. and Yang, S. (2012) Social contextual recommendation. Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Maui, 29 October-2 November 2012, 45-54.
http://dx.doi.org/10.1145/2396761.2396771
[5] 王立才, 孟祥武, 张玉洁 (2012) 上下文感知推荐系统. 软件学报, 1, 1-20.
[6] 李蕊, 李仁发 (2007) 上下文感知计算及系统框架综述. 计算机研究与发展, 44, 269-276.
[7] Adomavicius, G. and Tuzhilin, A. (2011) Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B. and Kantor, P.B., Eds., Recommender systems handbook, Springer, New York, 217-253.
http://dx.doi.org/10.1007/978-0-387-85820-3_7
[8] Karatzoglou, A., Amatriain, X., Baltrunas, L. and Oliver, N. (2010) Multiverse recommendation: N-dimensional tensor factorization for context-aware collaborative filtering. Proceedings of the 4th ACM Conference on Recommender Systems, Barcelona, 26-30 September 2010, 79-86.
http://dx.doi.org/10.1145/1864708.1864727
[9] Liu, X. and Aberer, K. (2013) SoCo: A social network aided con-text-aware recommender system. Proceedings of the 22nd International Conference on World Wide Web, 13-17 May 2013, Rio de Janeiro, 781-802.
[10] Koren, Y., Bell, R. and Volinsky, C. (2009) Matrix factorization techniques for recommender systems. Computer, 42, 30-37.
http://dx.doi.org/10.1109/MC.2009.263
[11] Buchin, M., Dodge, S. and Speckmann, B. (2012) Context-aware similarity of trajectories. In: Hutchison, D., Kanade, T. and Kanade, T., Eds., Geographic Information Science, Volume 7478 of Lecture Notes in Computer Science, Springer, Berlin, 43-56.