掺杂浓度对ZnO:Ag纳米棒结构和光致发光性能的影响
Effect of Dopant Concentration on Structure and Photoluminescence of ZnO:Ag Nanorods
DOI: 10.12677/APP.2016.63005, PDF, HTML, XML, 下载: 2,240  浏览: 4,531  国家自然科学基金支持
作者: 刘 奇, 王玉新*, 刘子伟, 孙景昌, 张 巍, 陈苗苗:辽宁师范大学物理与电子技术学院,辽宁 大连
关键词: ZnO纳米棒水热法Ag掺杂光致发光谱ZnO Nanorods Hydrothermal Method Ag Doping Photoluminescence
摘要: 本文利用水热生长法在掺铝氧化锌(AZO)种子层上以Ag掺杂制备出ZnO:Ag纳米棒,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和光致发光谱(PL)对所制备样品的晶体结构、表面形貌以及光致发光性能进行了分析。结果表明,随着Ag掺杂比例的增加,ZnO:Ag纳米棒的晶格常数先增大后减小。近紫外发光峰都发生蓝移,在Zn:Ag = 1:0.03时,近紫外发光峰的强度最强,不但出现了明显的“蓝移”,而且Ag离子的掺入也使深能级发光加强。经分析得出在一定的范围内,随着Ag掺杂比例增加,ZnO:Ag纳米棒的近紫外光的强度有明显的增强。
Abstract: ZnO:Ag nanorods were deposited on AZO seed layer by the hydrothermal method in different proportions of Ag doping. The structural, surface morphological and optical properties of the samples were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence (PL) spectrum. Experimental results show that the lattice constants of ZnO:Ag nanorods increase first then decrease with the rising of Ag doping concentration. And all of the NBE-peaks show blue-shift. The sample deposited at Zn:Ag = 1:0.03 has the highest NBE-peak with apparent blue-shift and a higher deep-level emission peak. So in a certain range, the NBE-peaks of ZnO:Ag nanorods increase obviously with the rising of Ag doping concentration.
文章引用:刘奇, 王玉新, 刘子伟, 孙景昌, 张巍, 陈苗苗. 掺杂浓度对ZnO:Ag纳米棒结构和光致发光性能的影响[J]. 应用物理, 2016, 6(3): 30-35. http://dx.doi.org/10.12677/APP.2016.63005

参考文献

[1] Hu, X.L., Masuda, Y., Ohji, T, et al. (2009) Control of Crystal Growth for ZnO Nanowhisker Films in Aqueous Solution. Thin Solid Films, 518, 906-910. http://dx.doi.org/10.1016/j.tsf.2009.07.114
[2] 徐小丽, 马书懿, 陈彦, 张国恒, 孙小菁, 魏晋军. 磁控溅射制备ZnO薄膜的结构及发光特性[J]. 光谱学与光谱分析, 2008, 28(9): 2028-2032.
[3] Seol, M., Kim, H., Tak, Y., et al. (2010) Novel Nanowire Array Based Highly Efficient Quantum Dot Sensitized Solar Cell. Chemical Communications, 46, 5521-5523. http://dx.doi.org/10.1039/c0cc00542h
[4] 孙萍, 熊波, 张国青, 等. 氧化锌纳米晶体的光谱分析. 光谱学与光谱分析, 2007, 27(1): 143-146.
[5] 商红凯, 张希清, 姚志刚, 等. 纳米ZnO镶嵌SiO2薄膜的磁控溅射制备和发光性质的研究[J]. 光谱学与光谱分析, 2006, 26(3): 415.
[6] Chou, C.S., Chou, F.C., Ding, Y.G., et al. (2012) The effect of ZnO-Coating on the Performance of a Dye-Sensitized Solar Cell. Solar Energy, 86, 1435-1442. http://dx.doi.org/10.1016/j.solener.2012.02.003
[7] Fan, J.C., Sreekanth, K.M., Xie, Z., et al. (2013) p-Type ZnO Materials: Theory Growth Properties and Devices. Progress in Materials Science, 58, 874-985. http://dx.doi.org/10.1016/j.pmatsci.2013.03.002
[8] 宋国利, 孙凯霞. ZnO:Er3+纳米晶的制备及发光性质研究[J]. 光谱学与光谱分析, 2006, 26(10): 1806-1809.
[9] Thomas, M.A. and Cui, J.B. (2010) Electrochemical Route to p-Type Doping of ZnO Nanowires. The Journal of Physical Chemistry Letters, 1, 1090-1094. http://dx.doi.org/10.1021/jz100246e
[10] Lee, Y. and Kim, H. (2001) Rohy. Deposition of ZnO Thin Films by the Ultrasonic Spray Pyrolysis Technique. Japanese Journal of Applied Physics, 40, 2423-2428. http://dx.doi.org/10.1143/JJAP.40.2423
[11] 焦飞, 廖成, 韩俊峰, 周震. 直流磁控反应溅射法制备大面积AZO薄膜的实验研究[J]. 光谱学与光谱分析, 2009, 29(3): 698-701.
[12] 刘宽菲, 武卫兵, 陈晓东, 等. 水热法制备ZnO纳米棒薄膜及其机理[J]. 济南大学学报, 2013, 27(4): 363-368.
[13] 潘吉浪, 尹荔松, 周克省, 等. 溶胶–凝胶法制备ZnO薄膜及其光催化性能[J]. 纳米技术精密工程, 2008, 2(6): 94-98.
[14] Lee, J.H. and Park, B.O. (2003) Transparent Conducting ZnO:Al, In and Sn Thin Films Deposited by the Sol-Gel Method. Thin Solid Films, 426, 94-99. http://dx.doi.org/10.1016/S0040-6090(03)00014-2
[15] 唐斌, 邓宏, 税正伟, 等. CVD法制备高质量ZnO纳米线及生长机理[J]. 人工晶体学报, 2007, 36(2): 293-296.
[16] 丁圣, 李梦轲, 王雪红, 等. 取向ZnO纳米线阵列的生长机理及发光特性[J]. 辽宁师范大学学报(自然科学版), 2006, 29(3): 305-307.
[17] 陈先梅, 王晓霞, 郜小勇, 赵显伟, 刘红涛, 张飒. 掺银氧化锌纳米棒的水热法制备研究[J]. 物理学报, 2013, 62(5): 300-307.
[18] Kim, S., Na, S., Jeon, H., et al. (2013) Effects of Sn Doping on the Growth Morphology and Electrical Properties of ZnO Nanowires. Nanotechnology, 24, 065703. http://dx.doi.org/10.1088/0957-4484/24/6/065703
[19] 何为桥, 钟敏, 王翰, 等. ZnO纳米棒的制备及光催化性能研究[J]. 稀有金属材料与工程, 2010, 39(增刊2): 320- 325.
[20] 王经纬, 边继明, 梁红伟, 等. Ag掺杂对ZnO薄膜的光电性能影响[J]. 发光学报, 2008, 29(3): 460-464.
[21] 靳福江, 李珍, 李飞, 等. ZnO纳米棒水热法制备及其发光性能[J]. 功能材料与器件学报, 2007, 13(5): 453-458.