Degree Based Topological Index Calculation of Pent-Heptagonal Nanotubes
DOI: 10.12677/PM.2016.63021, PDF, HTML, XML, 下载: 1,751  浏览: 5,734 
作者: 何 静*, 高 炜:云南师范大学信息学院,云南 昆明
关键词: Pent-Heptagonal纳米管分子图广义Randi?指数广义Zagreb指数Pent-Heptagonal Nanotube Molecular Graph Generalized Randi? Index Generalized Zagreb Index
摘要: 拓扑指数是分子结构数值化的一种方式,它能充分反映分子图的连接信息和化学环境,能有效地表达化合物的结构与性质。本文利用边集划分技术,得到Pent-Heptagonal纳米管若干基于度的拓扑指数。
Abstract: Topological index is an available numerically way of the molecular structure, it can fully reflect the molecular graphs connection information and chemical environment, can effectively express the structure and properties of the compounds. In this paper, by means of edge set partitioning technique, we obtain several topological indices of Pent-Heptagonal nanotubes.
文章引用:何静, 高炜. Pent-Heptagonal纳米管基于度的拓扑指数计算[J]. 理论数学, 2016, 6(3): 143-150.


[1] Gutman, L., Ruscic, B., Trinajstic, N. and Wilcox, C.F. (1975) Graph Theory and Molecular Orbitals. Journal of Phys-ical Chemistry, 62, 3399-3406.
[2] Randić, M. (1975) On the Characterization of Molecular Branching. Journal of the American Chemical Society, 97, 6609-6615.
[3] Bondy, J.A. and Murty, U.S.R. (1976) Graph Theory with Applica-tions. Macmillan Press, London, 1-40.
[4] Balaban, A.T., Motoc, I., Bonchov, D. and Mekenyan, O. (1983) Topological Indices for Structure-Activity Correlations. Topics in Current Chemistry, 114, 21-55.
[5] Farahani, M.R. and Gao, W. (2015) On the Omega Polynomial of a Family of Hydrocarbon Moleculs “Polycyclic Aromatic Hydrocarbons PAHK”. Asian Academic Research Journal of Multidisciplinary, 2, 263-268.
[6] Bollobas, B. and Erdos, P. (2015) Graph of Extremal Weights. Ars Combinatoria, 50, 225-233.
[7] Gao, W. and Rajesh Kanna, M.R. (2015) The Connective Eccentric Index for an Infinite Family of Dendrimers. Indian Journal of Fundamental and Applied Life Sciences, 5, 766-771.
[8] Mohammad, R.F. (2013) Connectivity Indices of Pent-Heptagonal Nanotubes. Advances in Materials and Corrosion, 2, 33-35.
[9] Gao, W. and Wang, W.F. (2014) Second Atom-Bond Connectivity Index of Special Chemical Molecular Structures. Journal of Chemistry, Article ID: 906254.
[10] Xi, W.F. and Gao, W. (2014) Geometric-Arithmetic Index and Zagreb Indices of Certain Special Molecular Graphs. Journal of Advances in Chemistry, 10, 2254-2261.
[11] Farahani, M.R. and Gao, W. (2016) On Multiplicative and Redefined Version of Zagreb Indices of V-Phenylenic Nanotubes and Nanotorus. British Journal of Mathematics & Computer Science, 13, 1-8.
[12] Farahani, M.R. (2013) Connectivity Indices of Pent-Heptagonal Nanotubes. Advance in Materials and Corrosion, 2, 33-35.
[13] Azari, M. and Iranmanesh, A. (2011) Generalized Zagreb Index of Graphs. Studia Universitatis Babes-Bolyai, 56, 59- 70.
[14] Eliasi, M. and Iranmanesh, A. (2011) On Ordinary Generalized Geometric-Arithmetic Index. Applied Mathematics Letters, 24, 582-587.
[15] Estrada, E., Torres, L., Rodrıguez, L. and Gutman, I. (1988) Anatombond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes. Indian Journal of Chemistry A, 37, 849-855.
[16] Gutman, I. (2011) Multiplicative Zagreb Indices of Trees. Bulletin of the International Mathematical Virtual Institute, 1, 13-19.
[17] Usha, A, Ranjini, P.S. and Lokesha, V. (2014) Zagreb Co-Indices, Augmented Zagreb Index, Redefined Zagreb Indices and Their Polynomials for Phenylene and Hexagonal Squeeze. Proceedings of Inter-national Congress in Honour of Dr. Ravi. P. Agarwal, Uludag University, Bursa.
[18] Furtula, B. and Gutman, I. (2015) A Forgotten Topological Index. Journal of Mathematical Chemistry, 53, 1184-1190.
[19] Furtula, B., Graovac, A. and Vukicevi, D. (2010) Augmented Zagreb Index. Journal of Mathematical Chemistry, 48, 370-380.