HJFNS  >> Vol. 5 No. 2 (May 2016)

    叶黄素生物利用与脂类相关性研究进展
    The Advance of Research on the Role of Lipids on the Biological Utilization of Lutein

  • 全文下载: PDF(411KB) HTML   XML   PP.37-44   DOI: 10.12677/HJFNS.2016.52006  
  • 下载量: 796  浏览量: 3,728   国家自然科学基金支持

作者:  

黄 雪,应 威,徐贤荣:杭州师范大学医学院预防医学系,浙江 杭州

关键词:
叶黄素膳食脂肪高密度脂蛋白SR-BIApoELutein Dietary Fat HDL SR-BI ApoE

摘要:

叶黄素是一种脂溶性类胡萝卜素,广泛存在于绿叶蔬菜、鸡蛋等食物中。其在人体中的整个生物利用过程,包括消化、吸收、运输、代谢等过程均与脂类有密切关系。膳食叶黄素的消化吸收需要多种脂类参与,膳食脂肪的质与量均影响其生物利用度。在循环中,叶黄素需要与载脂蛋白一起在血液中运输。其在不同载脂蛋白中的分配比例有很大的差异,血浆胆固醇种类和含量均可能影响其转运效率。此外,脂类相关受体,基因和激素在叶黄素的组织利用过程中发挥重要作用。本文通过综述脂类在叶黄素人体生物利用中的作用,拟为叶黄素应用于人群干预提供有益信息。

Lutein is a fat-soluble carotenoid present in various kinds of food, such as green leafy vegetables and eggs. The utilization of lutein in human body, including digestion, absorption, transport and metabolism, is associated with lipids. The digestion and absorption of lutein from food require the participation of fat. Both the amount and quality of dietary fat could influence the bioavailability of lutein. In circulation, lutein is transported in serum with lipoprotein. The percentage distribution of lutein varies among different lipoproteins, and serum cholesterol level could influence its transport efficiency. Furthermore, the lipid receptors, lipid-related hormone and gene play an important role on the tissue utilization of lutein. In this article, we reviewed the roles of lipids in the biological utilization of lutein in human body and trying to provide some beneficial information on the dietary supplement of luteinin population.

文章引用:
黄雪, 应威, 徐贤荣. 叶黄素生物利用与脂类相关性研究进展[J]. 食品与营养科学, 2016, 5(2): 37-44. http://dx.doi.org/10.12677/HJFNS.2016.52006

参考文献

[1] Bernstein, P.S., Li, B., Vachali, P.P., Gorusupudi, A., Shyam, R., Henriksen, B.S. and Nolan, J.M. (2016) Lutein, Zeaxanthin, and Meso-Zeaxanthin: The Basic and Clinical Science Underlying Carotenoid-Based Nutritional Interven-tions against Ocular Disease. Progress in Retinal and Eye Research, 50, 34-66.
http://dx.doi.org/10.1016/j.preteyeres.2015.10.003
[2] Scripsema, N.K., Hu, D.N. and Rosen, R.B. (2015) Lutein, Zeaxanthin, and Meso-Zeaxanthin in the Clinical Management of Eye Disease. Journal of Ophthalmology, 2015, 865179.
[3] Dwyer, J.H., Navab, M., Dwyer, K.M., Hassan, K., Sun, P., Shircore, A., Hama-Levy, S., Hough, G., Wang, X., Drake, T., Merz, C.N. and Fogelman, A.M. (2001) Oxygenated Carotenoid Lutein and Progression of Early Atherosclerosis: The Los Angeles Atherosclerosis Study. Circulation, 103, 2922-2927.
http://dx.doi.org/10.1161/01.CIR.103.24.2922
[4] Min, J.Y. and Min, K.B. (2014) Serum Lycopene, Lutein and Zeaxanthin, and the Risk of Alzheimer’s Disease Mortality in Older Adults. Dementia and Geriatric Cognitive Disorders, 37, 246-256.
http://dx.doi.org/10.1159/000356486
[5] Lakshminarayana, R., Raju, M., Krishnakantha, T.P. and Baskaran, V. (2007) Lutein and Zeaxanthin in Leafy Greens and Their Bioavailability: Olive Oil Influences the Absorption of Dietary Lutein and Its Accumulation in Adult Rats. Journal of Agricultural and Food Chemistry, 55, 6395-400.
http://dx.doi.org/10.1021/jf070482z
[6] Goltz, S.R., Campbell, W.W., Chitchumroonchokchai, C., Failla, M.L. and Ferruzzi, M.G. (2012) Meal Triacylglycerol Profile Modulates Postprandial Absorption of Carotenoids in Humans. Molecular Nutrition & Food Research, 56, 866-877.
http://dx.doi.org/10.1002/mnfr.201100687
[7] O’Neill, M.E. and Thurnham, D.I. (1998) Intestinal Absorption of Beta-Carotene, Lycopene and Lutein in Men and Women Following a Standard Meal: Response Curves in the Tri-acylglycerol-Rich Lipoprotein Fraction. British Journal of Nutrition, 79, 149-159.
http://dx.doi.org/10.1079/BJN19980026
[8] Schaeffer, J.L. and Hamilton, P.B. (1990) Effect of Dietary Lipid on Lutein Metabolism during Aflatoxicosis in Young Broiler Chickens. Poultry Science, 69, 53-59.
http://dx.doi.org/10.3382/ps.0690053
[9] Rich, G.T., Faulks, R.M., Wickham, M.S. and Fillery-Travis, A. (2003) Solubilization of Carotenoids from Carrot Juice and Spinach in Lipid Phases: II. Modeling the Duodenal Environment. Lipids, 38, 947-956.
http://dx.doi.org/10.1007/s11745-003-1148-z
[10] Rich, G.T., Bailey, A.L., Faulks, R.M., Parker, M.L., Wickham, M.S. and Fillery-Travis, A. (2003) Solubilization of Carotenoids from Carrot Juice and Spinach in Lipid Phases: I. Modeling the Gastric Lumen. Lipids, 38, 933-945.
http://dx.doi.org/10.1007/s11745-003-1147-0
[11] Sugawara, T., Kushiro, M., Zhang, H., Nara, E., Ono, H. and Nagao, A. (2001) Lysophosphatidylcholine Enhances Carotenoid Uptake from Mixed Micelles by Caco-2 Human In-testinal Cells. Journal of Nutrition, 131, 2921-2927.
[12] Baskaran, V., Sugawara, T. and Nagao, A. (2003) Phospho-lipids Affect the Intestinal Absorption of Carotenoids in Mice. Lipids, 38, 705-711.
http://dx.doi.org/10.1007/s11745-003-1118-5
[13] Lakshminarayana, R., Raju, M., Krishnakantha, T.P. and Baskaran, V. (2006) Enhanced Lutein Bioavailability by Lyso-Phosphatidylcholine in Rats. Molecular and Cellular Biochemistry, 281, 103-110.
http://dx.doi.org/10.1007/s11010-006-1337-3
[14] Shanmugam, S., Park, J.H., Kim, K.S., Piao, Z.Z., Yong, C.S., Choi, H.G. and Woo, J.S. (2011) Enhanced Bioavailability and Retinal Accumulation of Lutein from Self-Emulsifying Phospholipid Suspension (SEPS). International Journal of Pharmaceutics, 412, 99-105.
http://dx.doi.org/10.1016/j.ijpharm.2011.04.015
[15] Unlu, N.Z., Bohn, T., Clinton, S.K. and Schwartz, S.J. (2005) Carotenoid Absorption from Salad and Salsa by Humans Is Enhanced by the Addition of Avocado or Avocado Oil. Journal of Nutrition, 135, 431-436.
[16] van der Made, S.M., Kelly, E.R., Berendschot, T.T., Kijlstra, A., Lutjohann, D. and Plat, J. (2014) Consuming a Buttermilk Drink Containing Lutein-Enriched Egg Yolk Daily for 1 Year Increased Plasma Lutein but Did Not Affect Serum Lipid or Lipoprotein Concentrations in Adults with Early Signs of Age-Related Macular Degeneration. The Journal of Nutrition, 144, 1370-1377.
http://dx.doi.org/10.3945/jn.114.195503
[17] Kim, J.E., Gordon, S.L., Ferruzzi, M.G. and Campbell, W.W. (2015) Effects of Egg Consumption on Carotenoid Absorption from Co-Consumed, Raw Vegetables. The American Journal of Clinical Nutrition, 102, 75-83.
http://dx.doi.org/10.3945/ajcn.115.111062
[18] Reboul, E., Abou, L., Mikail, C., Ghiringhelli, O., Andre, M., Portugal, H., Jourdheuil-Rahmani, D., Amiot, M.J., Lairon, D. and Borel, P. (2005) Lutein Transport by Caco-2 TC-7 Cells Occurs Partly by a Facilitated Process Involving the Scavenger Receptor Class B Type I (SR-BI). Biochemical Journal, 387, 455-461.
http://dx.doi.org/10.1042/BJ20040554
[19] O’Sullivan, L., Aisling, S.A. and O’Brien, N.M. (2009) Investigation of Beta-Carotene and Lutein Transport in Caco-2 Cells: Carotenoid-Carotenoid Interactions and Transport Inhibition by Ezetimibe. International Journal for Vitamin and Nutrition Research, 79, 337-347.
http://dx.doi.org/10.1024/0300-9831.79.56.337
[20] Wang, W., Connor, S.L., Johnson, E.J., Klein, M.L., Hughes, S. and Connor, W.E. (2007) Effect of Dietary Lutein and Zeaxanthin on Plasma Carotenoids and Their Transport in Lipoproteins in Age-Related Macular Degeneration. The American Journal of Clinical Nutrition, 85, 762-769.
[21] Connor, W.E., Duell, P.B., Kean, R. and Wang, Y. (2007) The Prime Role of HDL to Transport Lutein into the Retina: Evidence from HDL-Deficient WHAM Chicks Having a Mutant ABCA1 Transporter. Investigative Ophthalmology & Visual Science, 48, 4226-4231.
http://dx.doi.org/10.1167/iovs.06-1275
[22] Ryden, M., Lean-derson, P., Kastbom, K.O. and Jonasson, L. (2012) Effects of Simvastatin on Carotenoid Status in Plasma. Nutrition, Metabolism and Cardiovascular Diseases, 22, 66-71.
http://dx.doi.org/10.1016/j.numecd.2010.04.009
[23] Kay, C.D., Gebauer, S.K., West, S.G. and Kris-Etherton, P.M. (2010) Pistachios Increase Serum Antioxidants and Lower Serum Oxidized-LDL in Hypercholesterolemic Adults. The Journal of Nutrition, 140, 1093-1098.
http://dx.doi.org/10.3945/jn.109.117366
[24] Mutungi, G., Waters, D., Ratliff, J., Puglisi, M., Clark, R.M., Volek, J.S. and Fernandez, M.L. (2010) Eggs Distinctly Modulate Plasma Carotenoid and Lipoprotein Subclasses in Adult Men Following a Carbohydrate-Restricted Diet. The Journal of Nutritional Biochemistry, 21, 261-267.
http://dx.doi.org/10.1016/j.jnutbio.2008.12.011
[25] Fritsche, L.G., Chen, W., Schu, M., Yaspan, B.L., Yu, Y., Thorleifsson, G., Zack, D.J., Arakawa, S., Cipriani, V., Ripke, S., Igo Jr., R.P., Buitendijk, G.H., Sim, X., Weeks, D.E., Guymer, R.H., Merriam, J.E., Francis, P.J., Hannum, G., Agarwal, A., Armbrecht, A.M., Audo, I., Aung, T., Barile, G.R., Benchaboune, M., Bird, A.C., Bishop, P.N., Branham, K.E., Brooks, M., Brucker, A.J., Cade, W.H., Cain, M.S., Campochiaro, P.A., Chan, C.C., Cheng, C.Y., Chew, E.Y., Chin, K.A., Chowers, I., Clayton, D.G., Cojocaru, R., Con-ley, Y.P., Cornes, B.K., Daly, M.J., Dhillon, B., Edwards, A.O., Evangelou, E., Fagerness, J., Ferreyra, H.A., Friedman, J.S., Geirsdottir, A., George, R.J., Gieger, C., Gupta, N., Hagstrom, S.A., Harding, S.P., Haritoglou, C., Heckenlively, J.R., Holz, F.G., Hughes, G., Ioannidis, J.P., Ishibashi, T., Joseph, P., Jun, G., Kamatani, Y., Katsanis, N., C.N.K., Khan, J.C., Kim, I.K., Kiyohara, Y., Klein, B.E., Klein, R., Kovach, J.L., Kozak, I., Lee, C.J., Lee, K.E., Lichtner, P., Lotery, A.J., Meitinger, T., Mitchell, P., Mohand-Said, S., Moore, A.T., Morgan, D.J., Morrison, M.A., Myers, C.E., Naj, A.C., Nakamura, Y., Okada, Y., Orlin, A., Ortube, M.C., Othman, M.I., Pappas, C., Park, K.H., Pauer, G.J., Peachey, N.S., Poch, O., Priya, R.R., Reynolds, R., Richardson, A.J., Ripp, R., Rudolph, G., Ryu, E., et al. (2013) Seven New Loci Associated with Age-Related Macular Degeneration. Nature Genetics, 45, 433-439.
http://dx.doi.org/10.1038/ng.2578
[26] Tariq, A., Mahroo, O.A., Williams, K.M., Liew, S.H., Beatty, S., Gilbert, C.E., Van Kuijk, F. J. and Hammond, C.J. (2014) The Heritability of the Ring-Like Distribution of Macular Pigment Assessed in a Twin Study. Investigative Ophthalmology & Visual Science, 55, 2214-2219.
http://dx.doi.org/10.1167/iovs.13-13829
[27] Liew, S.H., Gilbert, C.E., Spector, T.D., Mellerio, J., Marshall, J., van Kuijk, F.J., Beatty, S., Fitzke, F. and Hammond, C.J. (2005) Heritability of Macular Pigment: A Twin Study. In-vestigative Ophthalmology & Visual Science, 46, 4430- 4436.
http://dx.doi.org/10.1167/iovs.05-0519
[28] Hammond, C.J., Liew, S.H., Van Kuijk, F.J., Beatty, S., Nolan, J.M., Spector, T.D. and Gilbert, C.E. (2012) The Heritability of Macular Response to Supplemental Lutein and Zeaxanthin: A Classic Twin Study. Investigative Ophthalmology & Visual Science, 53, 4963-4968.
http://dx.doi.org/10.1167/iovs.12-9618
[29] Meyers, K.J., Johnson, E.J., Bernstein, P.S., Iyengar, S.K., Engelman, C.D., Karki, C.K., Liu, Z., Igo Jr., R.P., Truitt, B., Klein, M.L., Snodderly, D.M., Blodi, B.A., Gehrs, K.M., Sarto, G.E., Wallace, R.B., Robinson, J., LeBlanc, E.S., Hageman, G., Tinker, L. and Mares, J.A. (2013) Genetic Determinants of Macular Pigments in Women of the Carotenoids in Age-Related Eye Disease Study. Investigative Ophthalmology & Visual Science, 54, 2333-2345.
http://dx.doi.org/10.1167/iovs.12-10867
[30] Constantineau, J., Greason, E., West, M., Filbin, M., Kieft, J.S., Carletti, M.Z., Christenson, L.K. and Rodriguez, A. (2010) A Synonymous Variant in Scavenger Receptor, Class B, Type I Gene Is Associated with Lower SR-BI Protein Expression and Function. Atherosclerosis, 210, 177-182.
http://dx.doi.org/10.1016/j.atherosclerosis.2009.11.029
[31] Zerbib, J., Seddon, J.M., Richard, F., Reynolds, R., Leveziel, N., Benlian, P., Borel, P., Feingold, J., Munnich, A., Soubrane, G., Kaplan, J., Rozet, J.M. and Souied, E.H. (2009) rs5888 Variant of SCARB1 Gene Is a Possible Susceptibility Factor for Age-Related Macular Degeneration. PLoS ONE, 4, e7341.
http://dx.doi.org/10.1371/journal.pone.0007341
[32] Meyers, K.J., Mares, J.A., Igo Jr., R.P., Truitt, B., Liu, Z., Millen, A.E., Klein, M., Johnson, E.J., Engelman, C.D., Karki, C.K., Blodi, B., Gehrs, K., Tinker, L., Wallace, R., Ro-binson, J., LeBlanc, E.S., Sarto, G., Bernstein, P.S., SanGiovanni, J.P. and Iyengar, S.K. (2014) Genetic Evidence for Role of Carotenoids in Age-Related Macular Degeneration in the Carotenoids in Age-Related Eye Disease Study (CAREDS). Investigative Ophthalmology & Visual Science, 55, 587-599.
http://dx.doi.org/10.1167/iovs.13-13216
[33] Borel, P., Desmarchelier, C., Nowicki, M., Bott, R., Morange, S. and Lesavre, N. (2014) Interindividual Variability of Lutein Bioavailability in Healthy Men: Characterization, Genetic Variants Involved, and Relation with Fasting Plasma Lutein Concentration. The American Journal of Clinical Nutrition, 100, 168-175.
http://dx.doi.org/10.3945/ajcn.114.085720
[34] Provost, A.C., Vede, L., Bigot, K., Keller, N., Tailleux, A., Jais, J.P., Savoldelli, M., Ameqrane, I., Lacassagne, E., Legeais, J.M., Staels, B., Menasche, M., Mallat, Z., Behar-Cohen, F. and Abitbol, M. (2009) Morphologic and Electroretinographic Phenotype of SR-BI Knockout Mice after a Long-Term Atherogenic Diet. Investigative Ophthalmology & Visual Science, 50, 3931-3942.
http://dx.doi.org/10.1167/iovs.08-2527
[35] Moussa, M., Gouranton, E., Gleize, B., Yazidi, C.E., Niot, I., Besnard, P., Borel, P. and Landrier, J.F. (2011) CD36 Is Involved in Lycopene and Lutein Uptake by Adipocytes and Adipose Tissue Cultures. Molecular Nutrition & Food Research, 55, 578-584.
http://dx.doi.org/10.1002/mnfr.201000399
[36] Tsuchida, K. and Sakudoh, T. (2015) Recent Progress in Molecular Genetic Studies on the Carotenoid Transport System Using Cocoon-Color Mutants of the Silkworm. Archives of Biochemistry and Biophysics, 572, 151-157.
http://dx.doi.org/10.1016/j.abb.2014.12.029
[37] Borel, P., de Edelenyi, F.S., Vincent-Baudry, S., Male-zet-Desmoulin, C., Margotat, A., Lyan, B., Gorrand, J.M., Meunier, N., Drouault-Holowacz, S. and Bieuvelet, S. (2011) Genetic Variants in BCMO1 and CD36 Are Associated with Plasma Lutein Concentrations and Macular Pigment Optical Density in Humans. Annals of Medicine, 43, 47-59.
http://dx.doi.org/10.3109/07853890.2010.531757
[38] Kondo, N., Honda, S., Kuno, S. and Negi, A. (2009) Posi-tive Association of Common Variants in CD36 with Neovascular Age-Related Macular Degeneration. Aging (Albany NY), 1, 266-274.
http://dx.doi.org/10.18632/aging.100006
[39] Loane, E., McKay, G.J., Nolan, J.M. and Beatty, S. (2010) Apolipoprotein E Genotype Is Associated with Macular Pigment Optical Density. Investigative Ophthalmology & Visual Science, 51, 2636-2643.
http://dx.doi.org/10.1167/iovs.09-4397
[40] Adams, M.K., Simpson, J.A., Richardson, A.J., English, D.R., Aung, K.Z., Makeyeva, G.A., Guymer, R.H., Giles, G.G., Hopper, J., Robman, L.D. and Baird, P.N. (2012) Apolipoprotein E Gene Associations in Age-Related Macular Degeneration: The Melbourne Collaborative Cohort Study. American Journal of Epidemiology, 175, 511-518.
http://dx.doi.org/10.1093/aje/kwr329
[41] McKay, G.J., Patterson, C.C., Chakravarthy, U., Dasari, S., Klaver, C.C., Vingerling, J.R., Ho, L., de Jong, P.T., Fletcher, A.E., Young, I.S., Seland, J.H., Rahu, M., Soubrane, G., Tomazzoli, L., Topouzis, F., Vioque, J., Hingorani, A.D., Sofat, R., Dean, M., Sawitzke, J., Seddon, J.M., Peter, I., Webster, A.R., Moore, A.T., Yates, J.R., Cipriani, V., Fritsche, L.G., Weber, B.H., Keilhauer, C.N., Lotery, A.J., Ennis, S., Klein, M.L., Francis, P.J., Stambolian, D., Orlin, A., Gorin, M.B., Weeks, D.E., Kuo, C.L., Swaroop, A., Othman, M., Kanda, A., Chen, W., Abecasis, G.R., Wright, A.F., Hayward, C., Baird, P.N., Guymer, R.H., Attia, J., Thakkinstian, A. and Silvestri, G. (2011) Evidence of Association of APOE with Age-Related Macular Degeneration: A Pooled Analysis of 15 Studies. Human Mutation, 32, 1407- 1416.
http://dx.doi.org/10.1002/humu.21577
[42] Kan, M., Weng, X., Wang, T., Liu, F., Ye, J., Zhang, H., Xu, M., Zhou, D., He, L. and Liu, Y. (2015) No Evidence of Association between Variant rs2075650 in Lipid Metabolism-Related Locus APOE/TOMM40 and Advanced Age-Related Macular Degeneration in Han Chinese Population. Experimental Biology and Medicine (Maywood), 240, 230-234.
http://dx.doi.org/10.1177/1535370214553770