AAM  >> Vol. 5 No. 2 (May 2016)

    The Solution of Sparsity-Constrained Split Feasibility Problem

  • 全文下载: PDF(391KB) HTML   XML   PP.269-275   DOI: 10.12677/AAM.2016.52034  
  • 下载量: 1,302  浏览量: 3,466  


畅含笑,孙军,屈彪:曲阜师范大学管理学院,山东 日照

分裂可行问题稀疏约束IHT算法稳定点Split Feasible Problem Sparsity-Constrained IHT Algorithm Stationery



In this paper, we mainly study the solution of sparsity-constrained split feasibility problem. Under some reasonable assumptions, we use IHT algorithm to get the stationary points of sparsity-  constrained split feasibility problem and get a conclusion which plays an important role in local convergence analysis.

畅含笑, 孙军, 屈彪. 带稀疏约束的分裂可行问题的算法[J]. 应用数学进展, 2016, 5(2): 269-275. http://dx.doi.org/10.12677/AAM.2016.52034


[1] Bardsley, J. and Nagy, J. (2006) Covariance-Preconditioned Iterative Methods for Nonnegativity Constrainted Astro-nomical. SIAM Journal, 27, 1184-1198.
[2] Bruckstein, A.M., Donoho, D.L. and Elad, M. (2009) From Sparse Solu-tions of Systems of Equations to Sparse Modeling of Signals and Images. SIAM Review, 51, 34-81.
[3] Bruckstein, A.M., Elad, M. and Zibulevsky, M. (2008) On the Uni-queness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations. IEEE Transactions on Information Theory, 54, 4813-4820.
[4] Donoho, D.L. and Tanner, J. (2005) Sparse Nonnegative Solu-tions of Underdetermined Linear Equations by Linear Programming. Proceedings of the National Academy of Sciences of the United States of America, 102, 9446-9951.
[5] Beck, A. and Eldar, Y. (2013) Sparsity Constrained Nonlinear Optimization: Optimality Conditions and Algorithms. SIAM Journal, 23, 1480-1509.
[6] Bahmani, S., Raj, B. and Boufounos, P.T. (2013) Greedy Sparsi-ty-Constraind Optimization. Journal of Machine Learning Research, 14, 807-841.
[7] Cartis, C. and Thompson, A. (2013) A New and Improved Quantitative Recovery Analysis for Iterative Hard Thresholding Algorithms in Compressed Sensing. arXiv:1309.5406.pdf.
[8] Tropp, J. (2004) Greed Is Good: Algorithmic Results for Sparse Approximation. IEEE Transactions on Information Theory, 50, 2231-2242.
[9] Censor, Y. and Elfving, T. (1994) A Multiprojection Algorithm Using Bregman Projection in a Product Space. Numerical Algorithms, 8, 221-239.
[10] Bertsekas, D.P. (1999) Nonlinear Programming. 2nd Edition, Athena Scientific, Belmont.
[11] Wang, C., Liu, Q. and Ma, C. (2013) Smoothing SQP Algorithm for Semismooth Equations with Box Constraints. Computational Optimization and Applications, 55, 399-425.