页岩气成藏机理研究新进展
New Progress on the Research of Formation Mechanism of Shale Gas Reservoir
DOI: 10.12677/CCE.2016.42002, PDF, HTML, XML, 下载: 1,563  浏览: 3,115 
作者: 张 渴:西安科技大学 地质与环境学院,陕西 西安;马东民:西安科技大学 地质与环境学院,陕西 西安;国家能源煤与煤层气共采技术重点实验室,山西 晋城;相里海龙:陕西彬长大佛寺矿业有限公司,陕西 咸阳;邵 凯:陕西省煤层气开发利用有限公司,陕西 西安
关键词: 页岩气成藏机理成藏条件非常规Shale Gas Reservoir Forming Mechanism Reservoir Forming Conditions Unconventional
摘要: 页岩气作为常规天然气的接替能源,是一种非常重要的非常规能源,开发潜力巨大。在调研了国内外页岩气研究成果的基础上,总结了页岩气的成藏条件和成藏机理。页岩气的成藏条件有内因和外因。内因包括成因类型、气源条件(厚度、矿物组成、成熟度、总有机碳含量(TOC)、干酪根类型、热演化程度、湿度)、储集条件(裂缝、孔隙度和渗透率)、圈闭条件、保存条件(盖层条件、水文地质条件、构造条件),外因有深度、温度与压力。页岩气的成藏机理至少将煤层气(典型吸附气成藏原理)、根缘气(活塞式气水排驱原理)和常规气(典型的置换式运聚机理)的运移、聚集和成藏过程联结在一起,在表现特征上具有典型的过渡意义。
Abstract: Alternative energy for shale gas as a conventional natural gas is a very important kind of non- conventional energy resources, and has great potential for development. Based on the research of the domestic and foreign research achievements on shale gas, this paper summarizes the shale gas accumulation conditions and mechanism. Shale gas accumulation conditions have internal and external causes. Internal factors include genetic types, air condition (thickness, mineral composi-tion, maturity, total organic carbon (TOC) content, kerogen type, the degree of thermal evolution, reservoir conditions (humidity), cracks, porosity and permeability), trap conditions, preservation conditions (caprock condition, hydrogeological conditions, structural conditions); external factors include depth, temperature and pressure. At least the formation of shale gas accumulation me-chanism links the migration, accumulation and accumulation process of coalbed methane (typical adsorption gas reservoir forming principle), source contacting gas (piston type gas water dis-placement principle) and conventional gas (displacement of typical migration mechanism) to-gether, with the typical sense of transition in performance characteristics.
文章引用:张渴, 马东民, 相里海龙, 邵凯. 页岩气成藏机理研究新进展[J]. 清洁煤与能源, 2016, 4(2): 9-15. http://dx.doi.org/10.12677/CCE.2016.42002

参考文献

[1] Curtis, J.B. (2002) Fractured Shale Gas Systems. AAPG Bulletin, 86, 1921-1938.
[2] Kinley, T.J., Cook, L.W., Breyer, J.A., et al. (2009) Hydrocarbon Potential of the Barnett Shale (Mississippian), Delaware Basin, West Texas and Southeastern New Mexico. AAPG Bulletin, 93, 857-889.
[3] Dariusz, S., Maria, M., Arndt, S., et al. (2010) Geo-chemical Constraints on the Origin and Volume of Gas in the New Albany Shale (Devonian-Mississippian), Eastern Il-linois Basin. AAPG Bulletin, 94, 1713-1743.
http://dx.doi.org/10.1306/06301009197
[4] Zhu, Y.P., Liu, E.R., Alex, M., et al. (2011) Understanding Geo-physical Responses of Shale-Gas Plays. The Leading Edge, 30, 332-338.
http://dx.doi.org/10.1190/1.3567265
[5] Roger, M., Slatt, Y.A. (2011) Merging Sequence Stratigraphy and Geomechanice for Unconventional Gas Shales. The Leading Edge, 30, 274-282.
http://dx.doi.org/10.1190/1.3567258
[6] 张金川, 金之钧, 袁明生. 页岩气成藏机理及分布[J]. 天然气工业, 2004, 24(7): 15-18.
[7] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型, 特征, 机理及展望[J]. 石油学报, 2012, 33(2): 173-187.
[8] 邹才能, 陶士振, 侯连华, 等. 非常规油气地质[M]. 北京: 地质出版社, 2013: 37, 127-167.
[9] 杨振恒, 韩志艳, 李志明, 等. 北美典型克拉通盆地页岩气成藏特征, 模式及启示[J]. 石油与天然气地质, 2013, 34(4): 463-470.
[10] 邵珠福, 钟建华, 于艳玲, 等. 从成藏条件和成藏机理对比非常规页岩气和煤层气[J]. 特种油气藏, 2012, 19(4): 21-24.
[11] 聂海宽, 唐玄, 边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报, 2009, 30(4): 484-491.
[12] 董立, 赵旭, 涂乙. 页岩气成藏条件与评价体系[J]. 石油地质与工程, 2014, 28(1): 18-21.
[13] 王伟锋, 刘鹏, 陈晨. 页岩气成藏理论及资源评价方法[J]. 天然气地球科学, 2013, 24(3): 429- 438.
[14] 姜文斌, 陈永进, 李敏. 页岩气成藏特征研究[J]. 复杂油气藏, 2011, 4(3): 1-5.