BIPHY  >> Vol. 4 No. 4 (November 2016)

    原癌基因网络的最小生成树分析
    The Analysis of Minimum Spanning Tree of Proto-Oncogene Network

  • 全文下载: PDF(458KB) HTML   XML   PP.49-55   DOI: 10.12677/BIPHY.2016.44004  
  • 下载量: 885  浏览量: 3,203   科研立项经费支持

作者:  

韦芳萍:广西大学物理科学与工程技术学院,广西 南宁;
蓝贞雄:广西师范学院计算机与信息工程学院,广西 南宁

关键词:
原癌基因CVTree方法复杂网络最小生成树Proto-Oncogene Sequence CVTree Method Complex Network Minimum Spanning Tree

摘要:

人类原癌基因是与人类癌症关系非常密切的基因,当它的结构发生改变或过度表达时,就有可能使正常细胞发生癌变而导致癌症。本文通过构建复杂网络,然后根据Prim算法,做出最小生成树网络的方法,并分析网络的平均度、平均聚类系数和平均最短路径这三个主要参数来研究原癌基因序列之间的进化和亲缘关系。

Human proto-oncogene is a gene which has a very close relationship with human cancer. It is possible to make the normal cells cancerous and cause cancer, when the structure of human proto-oncogene changed or it is over-expressed. Using the complex network theory to study the evolutionary and genetic relationship between proto-oncogene and cancer, the research shows that the conclusion is in good agreement with the actual situation. This paper studies the evolutionary and genetic relationship of the proto-oncogene sequence through constructing complex network and working out the method of minimum spanning tree network according to Prim algorithm, and analyzing three main parameters of network, average degree, average cluster coefficient, and average shortest path.

文章引用:
韦芳萍, 蓝贞雄. 原癌基因网络的最小生成树分析[J]. 生物物理学, 2016, 4(4): 49-55. http://dx.doi.org/10.12677/BIPHY.2016.44004

参考文献

[1] 吴一飞, 李灼日. 原癌基因c-myc与恶性肿瘤[J]. 医学临床研究, 2008, 25(9): 1698-1700.
[2] 兰晓瑜. C-myc原癌基因启动区G-四链体DNA序列对结肠癌细胞增殖的影响[D]: [硕士学位论文]. 太原: 山西医科大学, 2015: 5-30.
[3] Tabin, C.J., Bradley, S.M., Bargmann, C.I., et al. (1982) Mechanism of Activation of a Human Oncogene. Nature, 300, 143-149.
http://dx.doi.org/10.1038/300143a0
[4] Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., et al. (2013) Signatures of Mutational Processes in Human Cancer. Nature, 500, 415-421.
http://dx.doi.org/10.1038/nature12477
[5] Qi, J., Wang, B. and Hao, B.-L. (2004) Whole Proteome Prokaryote Phylogeny without Sequence Alignment: A K-String Composition Approach. Journal of Molecular Evolution, 58, 1-11.
http://dx.doi.org/10.1007/s00239-003-2493-7
[6] Qi, J., Luo, H. and Hao, B.-L. (2004) CVTree: A Phylogenetic Tree Reconstruction Tool Based on Whole Genomes. Nucleic Acids Research, 32, W45-W47.
http://dx.doi.org/10.1093/nar/gkh362
[7] Xu, Z. and Hao, B.L. (2009) CVTree Update: A Newly Designed Phylogenetic Study Platform Using Composition Vectors and Whole Genomes. Nucleic Acids Research, 37, W174-W178.
http://dx.doi.org/10.1093/nar/gkp278
[8] Albert, R. and Barabasi, A.L. (2002) Statistical Mechanics of Complex Networks. Reviews of Modern Physics, 74, 47-97.
http://dx.doi.org/10.1103/RevModPhys.74.47
[9] Barat, A. and Weigt, M. (2000) On the Properties of Small-World Network Models. The European Physical Journal B-Condensed Matter and Complex Systems, 13, 547-560.
http://dx.doi.org/10.1007/s100510050067
[10] Newman, M.E.J. and Watts, D.J. (1999) Renormalization Group Analysis of the Small-World Network Model. Physics Letters A, 263, 341-346.
http://dx.doi.org/10.1016/S0375-9601(99)00757-4
[11] Prim, R.C. (1957) Shortest Connection Networks and Some Generalizations., The Bell System Technical Journal, 36, 1389-1401.
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
[12] 沈路明, 韦芳萍. 基于cvtree方法和复杂网络理论的癌症进化树分析[J]. 基因组学与应用生物学, 2014(2): 405-412.