应用数学进展  >> Vol. 5 No. 4 (November 2016)

一个求解非线性方程组问题的LS算法
A LS Algorithm for Nonlinear Equations

DOI: 10.12677/AAM.2016.54093, PDF, HTML, XML, 下载: 1,097  浏览: 2,820 

作者: 黄玲花:广西财经学院信息与统计学院,广西 南宁

关键词: 方程组共轭梯度收敛性Nonlinear Equations Conjugate Gradient Convergence

摘要: 本文给出一个求解非线性方程组问题的LS算法,该方法具有如下特点:1) 搜索方向自动满足充分下降性;2) 方向具有信赖域的特征;3) 算法拥有全局收敛性;4) 数值结果表明新方法是有效的。
Abstract: This paper presents a LS conjugate gradient algorithm for nonlinear equations and the given algorithm has the following features: 1) the search direction satisfies the sufficient descent property; 2) the direction also has the trust region property; 3) the proposed algorithm possesses the global convergence; 4) numerical results show that the new algorithm is effective.

文章引用: 黄玲花. 一个求解非线性方程组问题的LS算法[J]. 应用数学进展, 2016, 5(4): 813-817. http://dx.doi.org/10.12677/AAM.2016.54093

参考文献

[1] Fletcher, R. and Reeves, C.M. (1964) Function Minimization by Conjugate Gradients. Computer Journal, 7, 149-154.
https://doi.org/10.1093/comjnl/7.2.149
[2] Polak, E. and Ribière, G. (1968) Note sur la convergence de méthodes de directions conjuguées. Rev. franaise Informat.recherche Opérationnelle, 16, 35-43.
[3] Wei, Z.X., Yao, S.W. and Liu, L.Y. (2006) The Convergence Properties of Some New Conjugate Gradient Methods. Applied Mathematics & Computation, 183, 1341-1350.
https://doi.org/10.1016/j.amc.2006.05.150
[4] Yuan, G.L. (2009) Modified Nonlinear Conjugate Gradient Methods with Sufficient Descent Property for Large-Scale Optimization Problems. Optimization Letters, 3, 11-21.
https://doi.org/10.1007/s11590-008-0086-5
[5] Li, Q. and Li, D.H. (2011) A Class of Derivative-Free Methods for Large-Scale Nonlinear Monotone Equations. Ima Journal of Numerical Analysis, 31, 1625-1635.
https://doi.org/10.1093/imanum/drq015
[6] Yuan, G. and Zhang, M. (2015) A Three-Terms Polak-Ribière-Polyak Conjugate Gradient Algorithm for Large-Scale Nonlinear Equations. Journal of Computational & Applied Mathematics, 286, 186-195.
https://doi.org/10.1016/j.cam.2015.03.014
[7] Solodov, M.V. and Svaiter, B.F. (1998) A Globally Convergent Inexact Newton Method for Systems of Monotone Equations. Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods. Springer US, 1411- 1414.