MA核素的嬗变对快堆keff和中子通量的影响
Effects on keff and Neutron Flux of MA Transmutation in Fast Reactor
DOI: 10.12677/NST.2017.51001, PDF, HTML, XML,  被引量 下载: 1,687  浏览: 4,710 
作者: 蔡进, 刘滨, 于浩洋, 张文鑫:华北电力大学核科学与工程学院,北京
关键词: MA核素嬗变快堆keffMA Nuclides Transmutation Fast Reactor kkeff
摘要:

乏燃料中大量的次锕系元素(MA核素)要经过上万年的衰变才能消除其放射性危害。分离和嬗变技术(P&T)将乏燃料中的MA核素分离出来,再将MA核素放入反应堆中嬗变为短寿命核素或稳定核素,从而达到消除其放射性危害的目的。快堆是效率较高且技术较成熟的MA嬗变装置。为研究和比较237Np,241Am,243Am,244Cm,245Cm和混合MA核素的添加和上述核素装载量的不同对堆芯有效增殖因子(keff)的影响,采用MCNP程序搭建快堆模型进行模拟计算。计算结果显示,将237Np,241Am,243Am或混合MA核素以嬗变棒的形式替换燃料棒加入堆芯时,堆芯keff均下降,而将244Cm245Cm嬗变棒加入堆芯时,keff反而上升,且装载量越大,keff变化越多,这将威胁到反应堆的安全性,因此我们认为方案一为最佳装载量。中子通量密度的计算结果显示,MA核素的添加几乎对堆芯的中子通量没有影响,这是使用快堆嬗变MA核素的一个优点。 The radiation hazard of minor actinides (MA nuclides) in spent fuel cannot eliminate until tens of thousands of years’ decay. Partitioning and Transmutation technology (P&T) is a method to elim-inate MA nuclides’ radioactive hazard. By loading into the operating nuclear reactor, MA nuclides separated from the spent fuel are transmuted to short-lived nuclides or stable nuclides. Fast reactor is efficient and mature neutron source for transmuting MA nuclides. We build a simulation model of fast reactor by MCNP code to study the effects on effective multiplication factor (keff) caused by the addition of MA nuclides and to compare different loading amounts and different nuclides include 237Np, 241Am, 243Am, 244Cm, 245Cm and the mixture of MA nuclides above (MA mixture). Results show that the addition of 237Np, 241Am, 243Am and MA mixture can cause a decrease of keff, while the addition of 244Cm and 245Cm boost the keff instead, and the effects on effective multiplication factor (keff) of the reactor core enhance with the raising of MA loading amount, which threatens the safety of the reactor, thus, we consider the minimum amount as the best loading amount. Simulation results of neutron flux show that the minimum loading amount of MA barely affects the neutron flux, which is a advantage to transmute MA nuclides in fast reactor.

文章引用:蔡进, 刘滨, 于浩洋, 张文鑫. MA核素的嬗变对快堆keff和中子通量的影响[J]. 核科学与技术, 2017, 5(1): 1-12. http://dx.doi.org/10.12677/NST.2017.51001

参考文献

[1] 周培德. MOX燃料模块快堆嬗变研究[D]: [博士学位论文]. 北京: 中国原子能科学研究院, 2000.
[2] Artisyuk, V., Saito, M. and Stankovsky, A. (2005) Challenge of Transmutation of Long-Lived Nuclides. Progress in Nuclear Energy, 47, 327-338.
[3] Tucek, K. (2004) Neutronic and Burnup Studies of Accelerator Driven Systems Dedicated to Nuclear Waste Trans-mutation. PhD Thesis, Department of Physics, Royal Institute of Technology, Stockholm.
[4] Steinberg, M. (1964) Neutron Burning of Long-Lived Fission Products For Waste Disposal. BNL, New York.
[5] 罗璋琳. 核废料核素价值研究(续前) [J]. 原子能科学技术, 2004, 38(4): 334-338.
[6] Liu, B., Wang, K., Tu, J., Liu, F., Huang, L.M. and Hu, W.C. (2014) Transmutation of Minor Actinides in the Pressurized Water Reactors. Annals of Nuclear Energy, 64, 86-92.
https://doi.org/10.1016/j.anucene.2013.09.042
[7] Iwasaki, T. and Hirakawa, N. (1994) Neutron Economy of Transmutation of TRU in Thermal and Fast Neutron Fields. Journal of Nuclear Science and Technology, 31, 1255-1264.
https://doi.org/10.1080/18811248.1994.9735288
[8] Wakabayashi, T. (2002) Transmutation Characteristics of MA and LLFP in a Fast Reactor. Progress in Nuclear Energy, 40, 457-463.
https://doi.org/10.1016/S0149-1970(02)00038-0
[9] Liu, B., Hu, W., Wang, K., Huang, L.M., Ouyang, X., Tu, J. and Zhu, Y. (2013) Transmutation of MA in the High Flux Thermal Reactor. Journal of Nuclear Materials, 437, 95-101.
https://doi.org/10.1016/j.jnucmat.2013.01.348
[10] 徐銤. 中国实验快堆[M]. 北京: 高技术通讯, 1995.
[11] 胡赟, 王侃, 徐銤. 钠冷氧化物燃料快堆嬗变MA研究[J]. 核动力工程, 2010, 31(1): 18-22.
[12] 苏著亭, 叶长源, 闫凤文. 钠冷快增殖堆[M]. 北京: 原子能出版社, 1991.
[13] Berthou, V., Degueldre, C. and Magill, J. (2003) Trans-mutation Characteristics in Thermal and Fast Neutron Spectra: Application to Americium. Journal of Nuclear Materials, 320, 156-162.
https://doi.org/10.1016/S0022-3115(03)00183-1