理论数学  >> Vol. 7 No. 1 (January 2017)

随机矩阵非1特征值的含n个参数的Brauer型定位集
A Brauer-Type Set with n Parameters to Localize All Eigenvalues Different from 1 for Stochastic Matrices

DOI: 10.12677/PM.2017.71005, PDF, HTML, XML, 下载: 1,050  浏览: 2,750  国家自然科学基金支持

作者: 王笑笑, 李耀堂:云南大学数学与统计学院,云南 昆明

关键词: 随机矩阵特征值定位集次占优特征值Stochastic Matrix Eigenvalue Inclusion Set Subdominant Eigenvalue

摘要: 本文给出了随机矩阵非1特征值的一个含有n个参数的Brauer型定位集,并应用此定位集得到了随机矩阵次占优特征值模的一个新上界。文中数值算例表明通过适当选取参数,该文所得集合对随机矩阵非1特征值的定位优于一些现有文献中所给集合。
Abstract: A Brauer-type set with n parameters is given to localize all eigenvalues different from 1 for sto-chastic matrices, and an upper bound for the moduli of the subdominant eigenvalues of a stochastic matrix is obtained by using this set. Numerical examples are given to illustrate that the proposed set by taking proper parameters is better than the sets obtained from some existing literatures.

文章引用: 王笑笑, 李耀堂. 随机矩阵非1特征值的含n个参数的Brauer型定位集[J]. 理论数学, 2017, 7(1): 30-38. http://dx.doi.org/10.12677/PM.2017.71005

参考文献

[1] Pena, J.M. (1999) Shape Preserving Representations in Computer Aided-Geometric Design. Nova Science Publishers, Haup-page.
[2] Karlin, S. and Mcgregor, J. (1959) A Characterization of Birth and Death Processes. Proceedings of the National Academy of Sciences of the United States of America, 45, 375-379. https://doi.org/10.1073/pnas.45.3.375
[3] Seneta, E. (2004) Non-Negative Matrices and Markov Chains. Springer-Verlag, Berlin.
[4] Horn, R.A. and Johnson, C.R. (1986) Matrix Analysis. Cambridge University Press, Cambridge, England.
[5] Li, C.Q., Liu, Q.B. and Li, Y.T. (2015) Geršgorin-Type and Brauer-Type Eigenvalue Localization Sets of Stochastic Matrices. Linear and Multilinear Algrbra, 63, 2159-2170. https://doi.org/10.1080/03081087.2014.986044
[6] Cvetković, L.J., Kostić, V. and Peña, J.M. (2011) Eigenvalue Localization Refinements for Matrices Related to Positivity. SIAM Journal on Matrix Analysis and Applications, 32, 771-784. https://doi.org/10.1137/100807077
[7] 陈公宁. 矩阵理论与应用. 第2版, 北京: 科学出版社, 2007: 236.